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1.:1)111()It'4 PREFACE

Tilts Is the sixth or a series of earhook, N10;011111

coloirii of Te:tehers Of Tathematies bevan to publish in 1926. The
firs, &nit %\ it h siii.voy of progrpss ill the past Twooty_tirt,
Years," the second vith -Curriculum Problems in Tending.; 111at he-

the third twilit "Sch.( led ','.'firs in the Trachitur of
:\lathematies," the fourth with "Shmitivant Changes and '1'1't'i1tb
in the Teachint; of lathentaties Throtwhout the World since 1910,"
and the fifth with "The '!'ettelting of Cleonictry." liotind copies of
:111 but the first of these '..ettrboolis van still be scetircd from the
litir nti of Puhlications, Teachers Collet.te. Columbia University,
New Vorli. for $1.75

Yearbook, iinvo heel, well %Trek"l nail have no doubt
been the source of much 11(.11) to O.:tellers of mullion:dies and to
others intereA(11 in the mathematics held. The sneers. of these
previous Yearhoolis Iris convinced the N1ltiona1 council of t ht,

desirahility and visdont of rontintting the series. The Sixth Year-
book is aceodlindy presented in the hope that it will be helpful not
only to secondary teachers hut to intelinwnt lainc 1 as N1011.

'111(' purpose of the hook is to set forth as completely as possible
ill the :mace 1111(itted the place of mathentaties in modern life,
Other elutpters, treatint; (If subjvets like 11:011, unities and F.ngi-
neerint...., for o:a1,101(., initdit have been inducted, but rie place of
mathematics In such fields is obvious, yo it Nvas decided hest not to
include them.

I 11:411 to express my pronal appreciation tts well as that of the
National Council to all who have contributed to the Yearhool; or
who in any way have helped to mal:e it what it is.

VI

W. D. ltEnvE.
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MATHEMATICS IN MODERN LIFE



THE Apru( ArrioN OF MATHEMATICS
TO THE SOCIAL SCIENCES *

IRVING FISHER
l'ufe i'niper.vity, New Haven, Cann.

A Personal Tribute. It :lily not be amiss to precede what I
have to say On Mathematies in the Social Sciences by a reminiscent
statement of my personal impressions of J. Willard Gibbs, whose
pupil I was foity years ago. J. Willard Gibbs towered, head and
shoulders, above any other intellect with which I have come in
contact. I had a I, -en realization of his greatness even in those
formative years in Yale College and the Yale Graduate School,
But this keen realization has grown even keener as the years have
swept by, not only because of the increased evidence of the funda-
mental value of Gibbs' Nork in his own chosen field but also be-
cause in my own consciousness, after so many details have dropped
from memory, there persists all the more clearly the strong im-
pression which Gibbs' personality and teaching made upon me,

In saying this I do not think I can be accused of undue enthu-
silm simply from the loyalty of a pupil to his teacher, especially
ru vio of the statements of Lord Kelvin and others, which virtu-
,:lly rank Gibbs as the Sir Islay., Newton of America. Lord Kelp in
said w ain visiting at Yale, a few years ago, that "by the year 2000
Yale would be best known to the world for having produced J.
Willard Gibbs,"

One of the most striking characterizations of Gibbs was ro-
cently made by 1)r. John Johnston, now with the United States
St( el Corporation. then Professor of Chemistry at Yale, in his ad-
Orees on Gibbs .ielivered at Yale University two years ago. Ile
stand tlp_t no result of Gibbs' work had yet been overthrown, and
that, in this respect, Gibbs seems to stand unique and supreme
among the great scientists.

Adaptd by irmIshion from iultett of the American Mathiatteni bo'Iety,
April 110), Tito sovi.th Josiah Willard (111)11K Lotur, road at Des Moines, Deritt
br 31, 11129, hofore it ,14)1111 ssalon of th .%Inerlean NlatboinatIcal Society and
tho Amrienit A,hoelat Ion for the Advancement of Science,

1



2 THE SIXT i Y EARBOoK

The English physical chemist, Professor F. l i. Dolman, has paid
the following tribute to him

Gibbs ranks with men like Newton, Lagrange, and Hamilton, who by the
sheer fora and power of their minds have produced those generalised state-
ments of scientific law which mark epochs in the advance of exact knowl-
edge, . The work and inspiration of Gibbs have thus produced not only a
great science but also an equally g-rat. practiee. There is, to-day, no great
chemical or metallurgical industry that. does not depend, for the development
and cumrol of a great part of its operations, on an understanding and appli-
cation of dynamic chemistry and r.he geometrical theory of heterogeneous
equilibria.

Professor Ostwald said, in the preface to his t.erinan transla-
tion of Gibbs' thermodynamic papers in 1892:

The importance of the thermodynamic papers of Willard Gibbs can best
be indicated by the fact that in them is contained, explicitly or implicitly,
to large port of the discoveries whirl have since been made by various inves-
tigators in the domain of chemical and physical equilibrium and which have
leu to so notable to development in this field.. . , The contents of this work
are to-day of immediate importance and by no means of merely historical
value. For of the almost boundless wealth of results wHch it contains, or
to which it points the way, only a small part has up to tho present time 1892
been made fruitful.

Sir Joseph !Armor said of the work ,f Gibbs:
This monumental memoir On the Equilibrium of &Wow MUM Substances

made a dean sweep of the Kmiec', and workers in the modern experimental
scienco of physical chemistry have returned to it again and again to find
their empirical principles forecasted in he light of pure theory and to derive
fresh inspiration for new departures.

We think no less of Gibbs' greatness because he himself showed
so little consciousness of it. He must have realized the funda-
mental diameter of his work. But his pupils remarked his pro-
found modesty and often commented on it. His chief delight was
in truth-seekhig for its own sake, and he was so intent on this
search that he had no time even to think of c mphasizing the origi-
nality or value of his own ldditions to the great vista of truth over
which his mind s ..ept. Doubtless he often did not know or greatly
care where the work of others ceased and his own began. Ile did
not always wade through the literature which precried his own
scientific papers. etneinher hearing him say that when he wanted
to verify another man's result:, he ,:sually found it easier to work
them out for himself than to follow the other man's own course
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that there are so few who are trained in both lines for stall study,
and this particularly applies to any applications of Professor Gibbs'
vector analysis, It vector analysis should become more widely
understood and used by students ill the social sciences, doubtless
it would In' Ilion' generally utilized, at least as a vehicle for
thought,

Oceasionally, and increasingly, the ideas and notations of the
differential a1.11 integral calculus are applied by mathematical
lq*(11111iStS 11111 Itt 1St jai Wit, of t'Intr:41`, most of the mathe-
matics employed 111 the social sciences consists of simple algebra,
There is a saying, which, by the way, was quoted by Gibbs in his
toldess on NIultiplt, Algebra, that "the human mind has never
invented a labor-saving machine equal to algebra."

There are several fairly distinct hranehes of social science to
whieh mathematics has been, or may lh', ;ginned. The chief of
these may be distinguished as (1) pure economics, (2) the "smooth-
ing- of statistical series, 13) correlation, 4111,1 (4) probabilities, all
of which overlap to 50111V Oa .

own chief interest in social science, from a mathematical
p, int of view, has been in the first of these four eyoups, pure
theory.

1. Mathematics in Economic Theory. \\lull I began my
work in this field in 1891, mathematies in economie theory was
looked at askance, despite the fact that ninny years before, as early
as 1838, Cournot had written his brilliant Researches into the
Mathematical PrIniples th( Theory of Wealth. This hook later
greatly stimulated Professor Edgeworth of Oxford and Professor
Marshall of Cambridge, and to-day is ranked among the economic
classics. The same may be said of Jevons* Theory of Political
Economy, published in 1871. But in 1891, when my own evonomie
stlidies began, even the work of Cournot was almost unknown to
economists, and that of Jevons was little used. If one \yin turn
the pages of the main economic literature of 1891 and earlier, lie
will find practically no formulas and no diagrams. But \\*alras
and Paeto in Switzerland and Pantaleoni and Baroni in Italy,
Edgeworth and Marshall in England, Westergaard and Wicksell in
sc:uplinavia, anti a few other students in other countries were using
and del:tiding the new method.

When, at the request of Professor Edgeworth, I read a slightly
mathematical paper on the Mechanics of Bimetallism before the
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Jevons altnost at once arrested public attention by his brilliant lucidity and
interesting style.. .

A training in mathematics is helpful by giving command over a mar-
vt.nouslY lcr$c and exact language for expressing clearly some general rela-
tions ft/PI some short processes of economic reasoning; which can indeed be
expressed iu on:inary language, but not with equal sharpness of outline. Anti,
what. is of far greater importanee, experience in handling physical problems
by mathematical methods gives a gray. that cannot he obtained equally well
in any other way, of the mutual interaction of econoic changes. The direct
application of mathematical reasoning to the discovery of economic truths
has rt (uny rendered great servies in the hands of toaster mathematicians
to the study Of stati4tical averages and probabilities and in measuring the
degree of eonsilienc between eorri imed ,tansiical tables,

NlathVIllatifS SNITS economic theory in supplying such funda-
mental concepts based on t he differential calculus and also through
the process of differentiation solves problems of maxima and
minima, as in the simple process of determining formally what is
the price that the traffic will hear in order to make profits a
maximum.

The chief realm of economic theory to which mathematical
analysis of this formal kind applies is that. of supply and de-
mand. the determination of prices, the theoretical effect of taxes
or tariffs on prices. The results. cannot always be reduced to
figures but are often useful in terms of mac inequalities.

For instance, among the chief theorems .hown mathematically
by Cournot are the following:

That a tax on a monopolized article will always raise its price,
but sometimes by more and sometimes by le.s than the tax itself.

That a tax on an article under unlimited competition always
raises its price but by an amount less than tli tax itself,

That a tax proportional to the net income if a producer will
not affect the price of his product.

That fixed charges among costs of production do not affect price
not' do taxes on fixed charges.

That opening up free trade in a competitive article between two
previously independent markets may decrease the total product.

Among the most surprising paradoxes discovered by the mathe-
matical method is one shown by Edgeworth, that if a monopolist
sells two articles. say first and third class railway tickets, for which
the demand is correlated, it may be possible to tax the third class
tickets. at a fixed amount. each. with the result that. the monopolist
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bonds, the formulas underlying the bond tables used in every
broker's office.

While them development of mathematical economies f'om the
theoretical side has been steady and impressive since I was a young
man, it has by no means been so rapid as the development of the
three other branches to which I have referred.

2. Smoothing of Statistical Series. "S'moothing" statistical
data, the fitting of formnlas and curves to statistics, has. of course,
been one of the aims of statisticians for many generations. In
this way we have derived our mortality tables, the basis used by
actuaries for calculating life 'insurance premiums.

I understand that the second J. Willard Gibbs lecture was by
Robert. Henderson on Life Ingurance (o a i'4ocial Science and as a
Hathematical Prob km, The importance of this branch of our
subject does not need to be emphasized in an insurance center like
Des Moines.

Actuarial science is. of course. a development of the formidas
for capitalization or discount., particularly as applied to annuities,
combined with the introduction of the probability element. based
on mortality statistics. It is essentially an analysis of interest and
risk. It could he, and perhaps some (lay will be. applied to other
economic problems besides life iLsuranee, as soon as statistic's are
adequate for assessing risk numerically in other realms than hu-
man mortality. In fact, one of the crying needs of economic science
is a reliable basis for evaluating risks.

i'oneurrently with actuarial science has developed a science
of mathematics of mortality in relation to population, extending
at least back to the days of William Farr, Superintendent of the
Statistical Department of the Registrar General's Office of England
half a century ago. To-day this science has been further devel-
oped by Knibbs of Aust lia. Lotka and Glover in the United
States, :111(1 others.

Recently, with the development. of statistics of industry. the
art of curve fitting, by mathematical methods. has grown very
rapidly, and examples of it will he found in many current issues of
statistical journals. I :un, thyself, with a collaborator, Max Sasuly.
working on a new method of curve fitting aimed to avoid the use
of any preconceived formula but letting the statistical data them-
selves write their own formula, so to speak.

One important phase of curve fitting whivh links it closely



113111 11.1JTIJ.tiJ DIP so.wit.) 0111 j! :zutzatu s!til -11o!row-,0111! aa:110 
J1( lima.; 01(11:.!.1a1) .111;111.u.k s! 01 lo .1,I011M 501.135 11:J11510;S OA% 1 

JO S('0111310.1 011 1 0; ,c0.11111:.11)1:111),, Jo 1:01)I 0111 1/011(1(11: S1:11 11,14511:1I 

1111:001(1!001I .1u0i}oul) II:11110.1011!!, 3111 SI 11 11,)!tiA1 00!.ut 
wok! 0111 }s!!) azum10-00poi poz!sm(cluk) 0.11:11 I stou, uo)!1 

-1;1:601111 ,10 1109m1u0I0JA) 111011},i!A s! vutim Jo 0,11 .1111!"1:01III! 01)11111 

jAlni SUB!,)!4S!luls pluu sIspuou000 11:0!p:u101111:tu '..,:uopm:10111! 

;:111.1p.:1:00.10.1 550111511(1 1)0111:J-OS ,)11; JO ..1111115 3111 uI 
'5,101,0:J M11011000 .1.11110 S11/1.11U 

JO pin: .spuoal la.)iamu )10015 Jo `ssauisti(1 Jo 0111010A 011 Jo .so01 ao1 

.111)oulluoa Jo 151:0,mo.1 11 .qa1:1111-30.1 .7fuptss! AMII SI 011 .1/111 11:111 

0.ta0s puuoi an) 11,)!tim 01{) Jo 1111 luo.IJ s0!.i0s 31! 

JO Jul) Suu 1011)0.1(1 sl; os 010!!1:10.1.10,) dItimmu .mtio:rio) 35011 
Ind slut put: s9sul:Is 0111Iouo.)0 Jo 531.105 oicilmvAll Jo .1!1;d 1a0.10 

uoamog uollulaaao,) Jo) sa1(04 )1)1:11! smi 011m 'IllUJIISI11115 JIIMI.1(1 

'110.111H AWN JO U015.IIN 1110 ()01.10.11 U0J(1 

Jo 1)011 1JIII ait.I.untuia ;Iwo' v 5110111p1o.) ssau!suit 11!Isu..),).)J Jo 
sosoclauti 0114 0.1.105 04 511 1UA1 1? IIJIPS UI 3IIJI1101I011(1 JI1110110Ja 51101.1 

-1:A JO suopviaa101111 011 .`au!motis suolop.uo,) 111() 1)3)1.10s 

51:11 1).0.1Aa11Ii JO .i1.101lac); 'Am:4.1dd Jossajo.0 
...t:00!!)11coad pm: 5uo!4!!)1:al 

Jo 008 11! 81)113 11!0!!Bmailimit 1),),),u)J u00(( 0A1:11 .011 a10111 

1r,-111o1lid, sluatow00,) 11JIIS JO 0511 111IOS '41111 ?11:1II 011: '5.111 

-S91:15 ut 21.10.11 .131(1 J1 .111)!00(.1so 's1t:pm:1100) 'Isom Jou J! `S111:111 

.1)at1 =0 .qtamupd s! 011 11,1111.11 UT %ti.,1010111 ZIII1/111o111 

'530110105 .1j1110 UI 511 110M 511 S.111:491:15 .)I111 0110J0 III 0.11114100,111 1).11; 

-1)111:15 1: 15011111: 0111000(1 51I11 1I101.)11100,1 11091:101.10,/,, 5111 

s! ()1{M .uopuul 1 115.10.k10 .:1 0111 tiosluo(I pum jo 01111:11 )111 1111.m 

po1l:pos:4u 1i05010 s! .u0!1!:10.1.10,) .10 -11I0III(101J.101) J111 '503110138 11:1,115 

J11; UI 31.10.11 11:JI11:114111 JO 10.1111 011:1, 'uo1 ;eialao0 -E 
-.1011s-- .Q1)011111'00 101,101111U ,111 JO 

031.111 01 UO 111.1111 011 JO -00.130 J111 JO 110I 11:11IIIIJOIJI) 11:J05141115 otil 
lno ol pall mil til uankidu sn zlitulat; aoss,)Jo,u 

-!u;1 paoJuuls Jo tuPla()M 31()"(II()H I)" '.1!5aa.1!t1.1 

1100 ao;) Jo soots ,) uos.tuad v .110.1.11:A4 -s4 saoss0J 
-oad `aanlinatav Jo 4u0tulauola(i saluls i)a4p1,1 mil Jo 10!2jar,,I 

tuaapaory XltsaaAtua oth:,)11(.) Jo vlimias ..:1101 aossaJoad 
`2):11saantua tolgtunio) Jo 0.to0pi.,1 Sato"' aussajoJa 0,111 pp!1 u! 

pavom DAVI' otim asoto 5u0tuv saAatia 1)111:11101) pm: Sithins Jo 
ttopunigna plopsutro aril sT S.loatil attuouoaa JO Xpuls til!m 

91 KIDNIHIJS 'IVIDOS 311.1. XI g.)1.T.V1.311.14VIAI 



'31V3S 3111.11(11111.toi 

0111 on ii:111.tou .ii.ut:ou 04 04 4110 :411.01 )41:.)5 p.)4 40tuipt.,01 01.4 110 
AkJ)is )1111.k% a.k.,uh) .1}13f(11:(10.1(i ao 01(1 lull JJ1141) 

J111 si: .i41111iu! Otlia.t.iNJ ().10z tt.).).kkpi 111)01)(n.t15f1) 
.iJuatil.),).1.1 3131 3,1Jt1m SutzloJcisJ sal.tos 11:01 451 luls ltt 5.:11.1iiciuti Itolic) 

Ill 1,01 401(1 J.11: sussfos(ii: .111I 3! IIJAJ luimoU 
1011 st 0.1.111.) tio!iticiplsg) .10 .i4t1tquti0aci j() 1.10s auillJt4.11:ki 511(1 11:111 

011.14. 5t 11 51111 04 11 41:01 tia.1q putt jiosculti tr.itituil 
J.kaiw .i.ititglIquad it p) 4101 .1-11ip(ou 51 J.kati.) 1)011:(1 

311 41:11 .140.0:0,...:011 0!luouo,):,1 30 10:0.01q 11:1104 41:N: .0111111.m.N 

aussajoad .to.kamoti two(' suit i1 sitoutuj 
JI1111) 01110.)0{1 JA.111.) 040.0:(1 .114 4)111: :410!.11:.1 .40 souto.nu 

.11111)4SO550(1 141105.1t)(1 3o) .10(11111111 11111 01 110[11:111.1 ill 5011111.111! 

.10.1 1:111111.103 11 ";110A1 (11 110111 (14011:(1 o1) 0.1.111.1 .105 ,z0j0,1(1 
'1)101.3 511(4 II! .110.11 0.110111.1!.;111:0 11,)11111 0110i) a.kuti s1J1140 

p1111 010!ILL .0111.t3 011:411Li.i `0:11:4(11Ak .;) 147 uinonal 
.04-4)4.10.101.( 401:44!. v ..i01.wq.1 dug 4.1y 04t1. .it04).1 

;) si: 11.1115 ,:111:!,)4154 11:4s 41:04 4110110)111:1u Osiv dpuouud3 
30 .10441:0 1(4.1o.110z4):,1 A 0114 X3m.)0((o '5451110)1100.) 

Doti:1115 SIIIIII5110.10011 U000( 51:t1 *5.)051 11:15 tit lio!puct 
-1110 51: lutJtuotiJtill lupus 01 5o4up.1 51!(1 su .11:3 us i ItIona:d ..i411!(111 

-quad Jo 5y.ii1411: IUJf111111J11 11:111 ati }Joctins In() 30 timitaq JJpia 
031.10()3 01( 0,1 511 sttil (Iv A-43 riqugoid Jo sIsAreuv .17 

.1414(11;(10.1(1 114 .ipnly: 
.1i0:-(1.0:1 :4! '0,...:4..101430 .to spoil ow 0.111111):: I51101 

-q }1)1)1115 1)1111 !1111 }i3 3.1at1J '31(104 1)110001:, 1110 pull 1140 1:04:340(1 04 0111 
.1i1 111 41 .0.11110 .i41104.1001I 111403 043 0314 5051010 11p:4100 

-.10111 'Jitiolto50.:(10.r 50A.I11) Sauanba.1.3 JO las 11 0z:5o:I 40.s .05.10.10.1 011 

0() 1)4 .10451...1 )11.1v ill pm: :4,-).1a11J ..)1t0t41)0,13 30 ums tl 01011 
.1.1.111.) .11!11:1.10111 1: 11.11014.1.l 1)1 1.10S1111)(1 1.1111 .1(4 s4((:004)1: i113sr4),),ms 

:501 ,u) 3.101u 11000( 0.1114 3.1Jljl '3.)113 11040:p.4am) tut wow 
-Jid 11:Ilialt11:1MIII 1: '110tpuita4511) 2:Juatth0aj 111 n10,11D 1110.111111) 

1? III 'o:!,(1: SI II JJ.taf.),s 11)!.11:111JU 3(1 515.ijum; 111.)fluitt0tputu *NI 111 

3110111013 1114t1ottivi)U1 1 J11 jo 0110 st >151.t '14)11:.)11)ut .1pu0.111: sv 
atuto11.tolioi 1! 110 4104401(1 

144 amp 3t (11101.1011 .Clayou 311(1 '1109114445w m0:18 .1; aq 03 sairacidu 
spa, atp 30 unwhitals:p ato, 30 2;pnI5 Jl14 uoaq 5)111 NI:43104u! 

1130(4 0.11111 I +Tim ttl Nag 5414 1.4 3ualu(10(0.1,-)1) au() 
lunuttulut tututuxuut 11 '31? St .101130 0144 Jittim 0.40z 1: s4 0.111)a 

ouo 11:9 os s0u4soa pull souls jo 53.1.11)0 01(3 0.01 su poptiaa 011? S0114 

3100E111ValA. ILLXIS HILL 91 



11u304 Ut :4otputto1111utt 10 lltaul 
-tioia.ap !trot! r JUl III 1t.I(I '01aitilII0,) 01-1.,)01(1 

f-4;01 '0;1111171M:1 11.).Nio.thi ;ifilo,),)(1 poy:sa,/(1 

-X0 0(1 01 S11(91110.1 0111 ilal(A\ 1)09MI 0111111)!*: JO 11°!'''')1(1X`) V`)(1 

0111 Jo.' ',ilamThini I? '1111,4 :4(1(1Ir.) I-411 

-Ott Klogio III '1).)(101.).%.11) sticII!) sa,)1I.)ps 
tIT p0,01(itt10 .lurs alit pm; ott0 imtilout utlItaps 

1311:1 on? ,:otta 
-tas alp lir114 

act ol 'Intl I: 011.: $333I101ort 11:1.00:z 011J., '11101.11111I 

oi )n.t4 .13.%;) aolui ottott 
0) nuitlooti 1tuot1o0 111 -:.)timitolimu O `a.`-dpoimott)i JO pioti att0 tirljl 

3.10111 uotlitaticipitiut oil) to: Istti, 
`suotnitita ,attottho.1J `sitotlytAap isttoprio.t.to.) `s.toquitut xoput 

sulaol tit .1)n1s .crult tZUt)t Inuotinzut 011) ptn; 
!Sltpotoli tit oicitoutad 111:flo1)tioiv all) pm: pur S.:;101011.) 

-SstI J0 utotlotti) aattotiloutt 011 1 1.`.(1010(10.111 1111; JO xoput 
alp si; Timis ..4oltlt)111.1(1 'sontsilatti .sItlooltuo imaotis U. slt sr!! 

1,011-0111 irot.).0010111/111t J0 luatudoio.v1) -1; put) am o,:otil J0 

tti .sottia'Altio putt attolltiti `.0totti ;ions .1011a1.)-: 

iiltoos 30 opts)no izi)lott 01 sr Ham su 'tint1I:at1p '.-.-;010410,1ci 

-to; gam: s.tali10 nu 111 lriti 1,3atutottoaa 'soottotos !rum,: 
at!) J0 liattr.tq tI. 0 Sut 111 Slut) Sattj .dpaim011)1 J0 sppti 

as.tmi:.11 `..)titql:q0iti 11111; 'Slung 11091:palm/ '1'1111 1 11.1 0..111.1 

-tins .1110 JO suntst.t1) 1 '0i.:3110,) JO '011.11 ti 
sitit011,10J oitilmum? 0,10as 1110 

xoplIT Ii:aq mil purl Ol potal o.1:11 `s.t.tiontx 
:rapui fo tiumnic a/a no .rog Stu tti 'iti1(111(10.1ti to lo)ft111-: .11f 1 01 

po1ui0.1 .qosuio st 1I .q)tilF, .11)111 111 paJoittrinolto .cum11 

0111 J0 ostivaati )JtIts,»Illtu irotattittio run; ii:unt11:1 

1) tiaamloti otiti.top.mq 011 1 110) 110111 )d `Alutzt(mult) .(111.).)0 Sall) 

astlydati s11 10 .111111u .t0J ttotouttosyJ 11:tootis pini slogluttu 
xoput JO) oot)nlati ptru otu s.toquitut xoput Jo n:ii 1 qui 01 

sutoos is011sp1l II: pup .s.)tutottoal J0 Hatt otii tt1 1:41:01 11; i11ri.10(1 

-tilt irgmt oil) stioattimoostut aotilo ,)::011 1 J() 
.sotitittiminati tiot111io.130.) .:Ittitutt o.uto 

.000til 0.111(1 4,cia11nut lolott a.\t11(I simott .1110J .t.)putt potitsyl:io 
Sits(:,) Inn on: tiottim Oplilil uaati amni st1091:,)titich: sooltatos 

.1011 10 0111 01 soi !pis is,)Itttottoag) 01 solouttotinutt Jo sum; 
Jo qsti at!) pa)Rtnixa stmattt 011 'osmoa JO tamIli 1 

LI SHDNI:Miz IVIDOF :,1,LVIViiII,LVV1 



.11 ATI 1 EMATICS IN BIOLOGY *
By .1. ARTI11711 II.11t1(1:4

nireesit y 0j .11 innesota, Minneapolis, M

':Tkioduction. What is mat hematies? And what right has
math( to obtrude itself upon the attention of biologists?

Since mathematirs is a very old science, inextricably bound up
in its historical development with logic and philosophy on the one
hand and with astronomy on the other, it. is perhaps impossible to
give a concise definition which would satisfy the workers in all
its fields, theoretical and applied. It is easier and more pertinent
to our present purpose to indicate some of the characteristics of
mathematics which make it. an essential factor in the more ad-
vanced stages of the development of all other science. This may
SCIVe as a preliminary to an outline of the claims of mathematics
to the attention of biologists, based on a considerations, on
servive in other natural sciences, and on the contribution which it
has already made to the advancement of biology.

I. THE FUNDAMENTAL CHARACTERISTICS OF MATHEMATICS AS
RELATED TO THE PHYSICAL AND 13IOLOGICAL 'SCIENCES

Premises and Conclusions. It is one of the characteristics of
mathematics that, starting with certain axioms, postulates, or as-
sumptions, it shows the way in which conclusions may he deduced
from these premises. The mathematician does not necessarily claim
absolute certainty for the physical validity of his conclusions, but
he believes profoundly that it is possible to find groups of axioms.
sets of a few propositions eachsuch that the propositions of each
set are eomnoille and that the propositions of each set imply other

The late Professor Barris was invited to write a chapter for this l'arbook onNiathematies ill Biology. lie gladly accepted the invitation and boil started toprepare his material %Olen he died suddenly after an operation for appendicitis.
It seems fitting that the should hare something from. Professor Barris' pen. Weare aeeortlim, Cy reprinting by permission this article adapted from Thy setentyleMonthly for ...ognst 1112st. See also Barris. .1. .trthur. '"Ilte Fundamental NIattie-
matical Regal. Inent.1 of Biology." Ameriron heintrt iv& MottlIthi. : 1 Tti-1;18.--
Tiii: EDITOR.
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Claims of Mathematics on the Working Biologist. Let us
consider in outline the. claims which mathematics has On the atten-
tion of the working biologist.

The first two may be stated in very general terms. They will,
110WeNTr, be developed in the discussion of special claims which is
to follow.

The most general contribution of mathematics to the natural
scienees is the affording of an exact and easily worka)le symbolism
for the exiaession of ideas. The progress of science depends very
largely upon the facility with which facts may be recorded and
relationships between them considered. In their bearing upon this
requirement of the natural sciences it is important to note that
an essential characteristic of mathematical methods is that they
economize thought. The notation of the mathematician affords the
maximum precision, simplicity, and C011eiSellOSS. The worker in
natural science finds in mathematical literature a highly perfected
symbolism which lie may use without developing one of his own.

But while a convenient notation is the most general contribu-
tion of mathematics to the natural sciences, it is neither the only
nor the most important one. In the natural sciences it is essential
that accurate observations and exact measurements be interpreted
by sound processes of reasoning. It seems logical to assume that
the biologist may profit by the centuries of experience of the mathe-
matician in the drawing of inevitable conclusions.

These claims are so general that we may properly turn to those
based on the specific acwinplishments of mathematics in the physi-
cal sciences and in biology itself in substantiation of our argument
for its wider application in biological research.

The Claim of Service in Other Physical Sciences. The
record of service of mathematics in the physical sciences is an out-
ttinding claim on the attention of biologists.

In the past, mathematics has been an integral part of the sciences
which we are accustomed to regard as the more highly developed.
of all flit.. is physical as distinguished from biological in the growth
of our civilization. The most determined critic of the application
of the mathematical method in biology dares not contemplate the
consequen-es of a :Maxwellian demon snatching from our scientific
literature and from the minds of our chemists, physicists, engineers,
and economists the mathematical formlas \Vnichi underlie the
routine of our daily life. In a few weeks long-distance com-
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munications would cease, the vehicles of transportation would be
motionless, factories would close, and urban population would face
starvation. As Professor A. Voss said in 1908, our entire present
civilization, as far as it depends upon the intellectual penetration
and utilization of nature, has its real foundation in the mathe-
matical sciences,

If reasoning by analogy is ever justified, experience in the
physical sciences would certainly seem to afford sufficient evidence
of the necessity for the extensive introduction of this powerful tool
of research into the biological sciences.

The argument that ,iologists should emulate the workers in the
physical sciences is strengthened by the fact that biological phe-
nomena are the most nearly infinitely complex of all natural
phenomena. This is necessarily true because the internal structure
and functioning of the organism and the effective environmental
conditions under which it must live and reproduce comprehend a
material fraction of the physical and chemical complexities of the
universe. Before the more complicated biological phenomena can be
grasped in any but the most circumscribed and superficial way by
the human mind, they must either be analyzed and simplified by
experimental control or expressed in the mentally intelligible terms
of mathematical summaries or generalizations.

It may be urged that the method of dealing with large numbers
of measurements is not that of the physicist or of the chemist who
frequently works with minute samples under carefully controlled
conditions.

The reasons for the differences in methods are two. First, the
student of molecules has the advantage of working with less com-
plex materials and under more readily controlled experimental con-
ditions. Second, the physicist or chemist already has his molecules
or ions massed and can investigate them and draw conclusions con-
cerning their properties from his examination of the properties of
his volume of gas or solution. The biologist must begin otherwise.
He must collect and determine the characteristics of each indi-
vidual of a large sample in order to express the characteristics of
the whole population in mathematical terms.

When ologists have had the necessary preliminary training,
they will realize that, for many of the phenomena with which they.
have to deal, the most easily comprehensible and the most useful
method of description and analysis is the mathematical. In the
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past, biologists as a class have been in reality hostile to the intro-
duction into their science of the methods which have proved their
worth elsewhere. I know this to be true from long and bitter
experienve. Instead of being eager to place biology alongside of
physies anti chemistry in the ranks of the exact sciences, biologists
have seemed not merely to excuse, but actually to take pride in the
distinction which has been drawn between the so-called exact and
the so-called descriptive sciences.

While the historical attitude of the biologist is not excusable, the
fault has not been entirely his. With most men mathematics is
iike a well-the .leeper they go in the less they see out and about,
Mathematics may quite properly be an end in itself, but in biology
it is strictly a means to an end. While mathematicians have in
the past, been eager to serve workers in the physical sciences, and
while mathematics itself owes a large debt to these sciences,
mathematicians have not for the most part felt, it worth while to
come to the assistance of biologists. Mathematicians have often
asserted the need of mathematic's in the biological sciences, but the
claim has too often been made in all cx cat hedra manner by those
\vho, while perhaps qualified to speak of things mathematical, la. :e
been relatively little fitted to discuss the needs of biology. While
biologists have been entirely too slow in recognizing the needs of
their science for the mathematical tools, they lase shown flu,.
practical good sense which characterizes those whose minds have
contact with matter by refusing to flock to the mathematicians'
standard until shown by concrete examples that the mathematical
method has real applicability in biology. Thus the burden of
proof has largely been thrown upon a few workers of greater vision,
\\ all the inevitable result that progress in the application of mathe-
matics in biology has been slow.

P.rogress has been slow, but progress there has nevertheless been.
The Evolution of Biology and the Influence of Quantita-

tive Methods. The natural sun nces ali had their beginnings in
observation and speculation. Careful description of the observed
phenomena, then furnished a basis of interpretation by comparison.
I:xpurinientation, which requires not merely controlled conditions
but measured consequences, followed observation and description.
Filadly quantitative measurement, calculatio n. and the formula-
tion of mathematical laws have characterized the highest stage of
scientific development.
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These stages in the development of the natural sciences are, to
be sure, neither wholly distinct in nature nor sharply separated in
time. The methods of the later stages have in some instances been
anticipated by investigators who were in advance of their con-
temporaries. It would be unfortunate indeed if men of science did
not at all times avail themselves of whatever is best in the methods
as well as in the results of those who preceded them. Notwith-
standing the difficulty of delimiting the various horizons, as our
geological friends might feel inclined to designate the deposits of
scientific literature of these periods of differing dominant purposes,
the sequence is in full accord with historical facts.

The old physicist who defined the biologist as "a man with
scientific aspirations and inadequate mathematics" would find, if
lie looked over a fair sample of current biological literature, that
not only has the space devoted to quantitative data increased enor-
mously during the past few years, but that there is a steadily grow-
ing effort on the part of biologists to express in concise formulas the
results of observation. Unfortunately, biology in most of its phases
still lacks the quantitative data, anu biologists in general want the
training in mathematical analysis which is essential in exact science.
Nevertheless the tendency of the times is unmistakable; the de-
mand for quantitative work is more and more domir. mt in the
biology of to-day.

The most forceful argument for the wider use of mathematics
in biology is furnished by the service which mathematics has al-
ready rendered in the biological sciences. Let us consider this more
specifically.

The Two Fronts of the Advance of Mathematics into
Biology. Progress in science depends upon evolution of method
as well as upon the accumulation of the data of observation, ex-
perimentation, and measurement. The progress which has been
made in the development of biology as a quantitative science
through the introduction of mathematical methods is in its present
stage the resultant of various factors, which can be understood
only when considered in their relation to the evolutionary history of
science in general and of biology in particular.

This evolution of the natural sciences is admirably illustrated
by the history of biology. Observations and speculations began
with primitive man. If a desire to record what has been seen
formed a part of the motives of those who bruised crude figures
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on the walls of caves, descriptions began with or before the period
of written language. Some attempts at classification were made at
a very early period in man's cultural development, but we are
accustomed to think of the great era of description and classifica-
tion as initiated in their modern form by the work of Linnaeus.
This period was also one of detailed geographic exploration.
Breadth of exploration doubtless tended to stimulate intensity of
interest in description and classification. The activities of these
decades resulted in toe storing of great museums with carefully
preserved and minutely described specimens of plants and animals,
in the publication of elegant icones which are among the master-
pieces of artistic book-making, comprehensive monographs of every
large genus, encyclopedic summaries of phyla and kingdoms, and
floras and faunas to the end of long vistas of library shelves.

Simultaneously with the latter decades of the period of de-
scription and classification of organisms, both living and fossil,
began the development of anatomy and embryology. both macro-
scopic and microscopic. These latter were indefatigably pursued
by an army of workers whose investigations were so comprehen-
sive that the younger and more restless spirits began to fear that
there would be no worlds left for them to conquer.

With such a wealth of descriptive materials at their disposal,
.t was inevitable that serious attempts at interpretation should be
made. Speculation as to the observed phenomena was largely re-
placed by effort at interpretation based upon comparison. "It is
descriptive but not comparative," was the criticism of a volume laid
before the elder Agassiz. The dominance of the comparative
method over a considerable period of the more recent history of
biology is attested by the presence of the word comparative in
the titles of a number of institutions and journals.

With taxonomy, comparative anatomy and embryology, his-
tology, and cytology well outlined, biologists found themselves free
to extend to other fields the methods which had heretofore been
limited to physiology. Experimental morphology, experimental
embryology, and experimental evolution are terms which illustrate
the degree to which the experimental method has dominated bio-
logical investigation (luring the last few years.

a) The Influence of Physics and Chemistry. As soon as biol-
ogy, in the course of its evolution, had passed the purely observa-
tional and descriptive stage and beTome an experimental science, it
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ful in physics and chetniFtry will become increasingly significant
in biology.

b) The Ri Re of Biometry. The penetration of the mathemati-
cal leaven into the biological lump through the medium of physics
and chemistry has been so gradual and so little associated with the
names of any individual workers that it has taken place without.
biologists as a class being, acutely aware of the profound change
in their science. The case is quite different with the second great
line of advance of the mathematical methods into biology. This is
directly traceable to the development. initiated by Francis Galion
and strenuously carried forward by Karl Pearson, of mathematical
formulas suitable for the analysis of the highly variThle data of
biological observation and measurement; and to the application
of these methods to a wide range of biological and sociological prob-
lems by the biometric school.

While the biometric methods were developed primarily for the
study of phenomena which are so complex that they cannot be
grasped by the unaided human mind or which cannot be readily
subjected to experimental control, they are now being advanta-
geously applied to the results of experimentation. Biologists will
doubtless some day realize that experimental results must receive
mathematical treatment for ',heir full interpretation.

For the present. there are many who stubbornly refuse to see.
We are sometimes told that the biometric constants are merely

a useful moans of expressing results. The idleness of such an as-
sertion will he apparent from two simple illustrations.

All mankind has had the opportunity of observing the statures
and other physical characteristics of husbands and wives. Yet it
remained for Pearson and his group to slow that there is a high de-
gree of assortative mating in man. Why was this not perceived if
the correlation coefficient only serves to express what we may learn
otherwise?

If the suggestion be made that those individuals who observed
human husbands and wives were for the most part scientifically
untrained. the reply is evident. Students by the thousands in the
biological laboratories of the world have observed conjugation in
Paramecium, but it required the biometric investigation by Pearl.
wo-king tinder the influence of Pearson. to show that in the union
the e is a high degree of similarity in the size of the conjugants.
Even after the relationship was clearly demonstrated biometrically,
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its validity was denied by at least two eminent zoologists. If
biometric methods are a useful means of expressing but not of
obtaining results, why did not zoologists long ago note the as-
sortative conjugation demonstrated by Pearl, and arrive at the
explanations afforded by the masterly studies in the same field by
Jennings?

The answer is obvious in both cases. Unaided observation was
incar-tble of dealing with the problems. They required for their
solution the application of mathematical methods Of analysis to
series of measurements.

These are by no means unique or exceptional cases. Instances
of the failure of biologists to observe important relationships, even
with the materials or the data before their eyes, could easily be
multiplied. Examples of the misinterpretation of materials or data
equally open to observation could be readily adduced. The mental
limitation implied is not peculiar to biologists. The inability to
grasp the more complicated natural phenomena without symbolism
is an inherent limitation of the human mind, fully recognized by
psychologists. That a man should be unable to reason about highly
complicated phenomena without the use of mathematical formulas
is no more remarkable than that he should be unable to see
chromosomes without the microscope.

Another criticism frequently heard is that the statistical methods
can only locate problemsnever solve them. The real solution.
we are told, must in the end be biological, psychological. socio-
logical. as the case may be. If this be true, it is the more im-
portant that the biologist, psychologist, and sociologist be them-
selves capable of using the mathematical methods, or at least of
cooperating intelligently with those who can. But is the criticism
really valid? The same strict.ure is equally applicable to all
methods of research. After a group of phenomena have been de-
scribed and analyzed as well as they can he by any means, other
problems remain to be attacked by new refinements of method or
of analysis.

The assertion is often made that the final results must depend
upon the original measurements and not upon their mathematical
treatment. A full discussion of this criticism would lead into sev-
eral complexities. but it is sufficient to answer by a very simple
illustration. The possibility of securing accuracy beyond the
power of observation, or at least beyond the degree of refinement
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of the measurements adopted, may be easily tested by measuring
a series of objects twice, once roughly and once with great accuracy.
The statistical constants of these two series of measurements may
then be calculated and compared. Unless there has been a con-
sistent bias or personal equation On the part of the observer which
tends to make all his measurements too high or too low, there will
be a remarkably close agreement between the results of the con-
stants calculated from the gross and from the refined series of
measurements.

Finally, one of the most common criticisms of the hiometrie
methods is that they are complex and difficult to use. We have
been told seriously by biologists that they expect to adopt the
biometric methods when they shall have been more simplified and
hence made more suitable ror practical use. But research does not
tend to become simpler with the advance of science. Since biologi-
cal phenomena are innately complex. there is no likelihood that the
mathematical formulas required for their investigation will be sim-
plified except in matters of practical technique. Criticism of the
biometric methods on the ground of their difficulty is merely the
glorification of the mental lassitude of the critic.

Let us turn from the answering of criticisms to things more
constructive.

If science is to advance at the rate which we desire, another
highly practical consideration cannot be neglected. Many biologi-
cal phen mena cannot be subjected to experimental control. Thus
while the proper study of mankind may he man, human individuals
and their relatives cannot be investigated in the same manner as
white rats and Drosophila. While man may be the most con-
spicuous illustration of an organism which cannot he studied in a
broad way under controlled conditions, the example is not unique.
In innumerable cases the statistical study of masses of data may
not only properly, but must necessarily, replace controlled experi-
mentation, I hope to show later that in such cases 'the experi-
mental and the statistical method are in essence identical.

Even where refined experimentation is possible the biometric
methods are particularly suited to reconnaissance work. In the
search for the relationship between different variables the statisti-
cal analysis of large masses of comparatively rough data may indi-
cate the place in which carefully controlled experiments may and
should be made, Finally, after biological problems have been sub-
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jected to as close experimental control as possible, the results are
generally so irregular as to make biometric analysis desirable.

Let us consider briefly, in review, the claims of the biometric
methods to the attention of biologists.

First: The biometric notation makes possible the expression of
the results of extensive experience in concise and mentally compre-
hensible terms.

This matter of the form of expression is one of far greater im-
portance than might at first be realized. Rapidity of progress in
any branch of science must depend very largely upon the facility
with which the data and conclusions of a new investigation can be
compared with those already on the library shelves. It is by the
reoccurrence of like results that general theories are established. It.is by the noting of inconsistencies and the circumstances under
which they occur that indications of as yet unsuspected relation-
ships are often seen.

There can be little doubt that the rapid advance of physics
and chemistry has been due in no small degree to quantitative and
standardized modes of expression.

If the physicist or chemist wants a solubility, melting point. or
conductivity of any substance, he has merely to turn to volumes
of constants to find whether it has been determined, and if con-
stants are available. whether the recorded results accord with his
own. An investigator has been able to draw upon a common fund
of knowledge to a greater extent and with greater ease than in
biology. Thus synthetic work has been facilitated.

In its bearing on the problem of the simplification of scientific
literature, consider for a moment the state in which biology would
he to-day had it not been for the Linnaean notation, by which
species may be designated by a simple binomial instead of by a
cumbersome description whenever it is mentioned. The value of
thi:z relatively suceinct notation becomes especially apparent when
we contemplate the vast harm which has been done to scientific
research through the unwillingness or inability of taxonomists to
m-,intain uniformity of nomenclature. Then in view of what has
been accomplished by this relatively simple expedient. imagine the
rapidity of advance which will he possible when a quantitative mode
of expression permits the results of many fields of biological re-
search to he summarized in annual volumes of standard constants.

personally. am inclined to look upon the publication of Donald-
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son's volume on the rat, in which the experience of a whole insti-
tution of workers is summarized in quantitative terms, as a real
milestone in the progress of biology.

Second: The biometric formulas provide a system of probable
errors which safeguards the worker in the formulation of his con-
clusions. Biometririans have referred so freely to probable errors
that critics have facetiously sm,gested that biometry is chiefly
error. But frankly and candidly, if a given set of observations is
insufficient to demonstrate a relationship, is it not better that the
investigator discover the fact himself than that he should publish
erroneous conclusions wi,icli must be corrected by subsequent. re-
search'?

Third: The biometric methods not. merely furnish a system of
mentally comprehensible constants and concise equations, suitable
for the description of complex phenomena. and a series of probable
errors which safeguards the worker in drawing conclusions con-
erning these phenomena, hit they make possible the investigation
of relationships so intricate and so delicate that they are quite be-
yond the scope of unaided observation. Here the biometric methods
have a potentiality for service analogous to that of the equipment
of the modern observatory, which is capable of dealing with stellar
phenomena that were beyond imagination a century ago, or to that
of modern microscopic equipment. and technique which have given
rise to whole sciences of microcosms which were beyond the ken
of Linnaeus. To argue that it is unnecessary to push on into the
investigation of these more recondite relationships is as contrary
to the spirit of science. as reactionary. as to argue that it were
better to have stopped with Galileo instead of advancing to the
refinements of modern astronomy through the development of in-
struments and mathematical theory.

Fourth: For many classes of problems the biometric formulas
applied to large masses of data furnish the closest possible approxi-
niation to the experimental method of investigation.

The experimental method, as ideally applied. consists essentially
in the simplification of conditions by rendering constant all but
one. This one factor is then varied and its influenee upon the
organism is noted. In certain phases of statistical analysis an
essentially identical method is followed, when we determine what
is called the partial correlation between two variables for constant
values of one. two, or more other variables.
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For example, the basal metabolism of tall men is on the aver-
age greater than that of those of less stature. Heavy men also
show a higher daily gaseous exchange than light ones. 'Rut taller
men are on the average heavier men, and it seems quite possible
that the larger basal food requirement of taller men is merely
the resultant of the relationship between stature and body weight
on the one hand and between weight and metabolism on the other.
The bioinetrieian solves such a problem statistically by determin-
ing the partial correlation between stature and metabolism for
constant Nveight, i.e., with the influence of body weight eliminated.
The experimentalist would have to attack the problem in exactly
the same manner.

Illustrations might be given by the score of the analytical treat-
ment of statistical data which gives results of essentially the same
nature as those w bleb are attained by the experimental method,
often in cases in which strictly experimental technique cannot be
readily applied.

Fifth: The biometric formulas furnish the best means as yet
available for predicting the value of one variable from another,
or from a series of others. This is due to the fact that it is pos-
sible to pass at once from measures of interdependence in terms
of the un.v. Nally comparable scale of correlation to regression
equations showing the rate of change in terms of the actual working
scale of any variable associated with another, or others, whose
values are known.

The great theoretical importance of this feature of the biometric
methods will bo clearly realized when we remember that. the test
for the validity of a theory is its capacity for predicting the un-
known.

The foregoing treatment in outline may have 1-,en disappoint-
ing to those who have expected argument by illustration of specific
accomplishment. The method has berm followed because the bio-
logical contributions which have already been made through the
use of the biometric methods are now so large that no one man,
even with unlimited space, can be expected to summarize them.
This is true, notwithstanding the fact that the number of workers
who have persistently stood by the bioinetric guns during the long
and discouraging. years of general indifference on the part of biolo-
gists can he counted on the lingers without using all the digits of
the hands.
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physicist, the chemist, and the astronomer. As yet little progress
in this direction has been made in biology, but I ani glad to go on
record as predicting that before many years have passed experi-
mentation will be to a considerable extent guided by preliminary
calculation.

My second point has to deal with a very different matter.
Elegance or form has always made a powerful appeal t, 'he

mathematician. As the biologist is forced by the inevitable prog-
ress of his science to occupy himself more cad more with mathe-
matical literature, its logic, terseness, and elegance of expression
must have an ilitlUence upon his own standards of presentation.

SUMMARY

Summarizing in a few sentences we may note that mathematics
is driving into biology on two wide fronts.

On the one, physics and chemistry are by virtue of their influ-
ence upon biological research forcing biologists to take over the
mathematics which is an indispensable part of these sciences. On
the other, biometry is grappling with problems which are not readily
amenable to experimental treatment.

The possible contributions of mathematics to biological science
are too varied to be succinctly summarized. We must, however,
record our entire disagreement with the dictum that mathematics
is only a mill from which no more conics out than was originally
put in. What Are put in are raw data, the significance of which is
obscured by all the perplexing irregularities due to morphological
and physiological variation, to errors of random sampling, and to
errors of measurement. What collies out is a series of mathematical
constants and equations, epitomizing in mentally intelligible form
the whole discordant, mass of irregularities and smoothing them in
a manner to bring out the underlying laws. To assert that the
value of a bionietrie research is determined by the raw biological
data is not altogether unli':e incastiring the value of a Titian by
the grams of pain ,(tii.ired to cover the canvas.

It has been the rali good fortune of Quetelet, Galton, and Pear-
son to initiate one of i he great lines of advance in biology. These
men will one day receive from biologists recognition as free and
generous as their great service merits. As for the rest of that little
handful of workers who have made up the biornetric school, it has
been the satisfaction of a few never to have stepped back from the
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guns during the long and discouraging years of biological indiffer-
ence and opposition.

The ultimate recognition mathematical biology is merely a
part of that inevitable and irreversible evolutionary process by
which biology is to take its place in the ranks of the exact sciences.



THE HUMANISTIC BEARINGS OF
MATHEMATICS

By CASSIUS J. KEYSER
Columbia University, New York City

Mathematics and Humanism. In order to reduce the hazard
of being misunderstood I will begin by giving some indication of
the senses in which the terms Mathematics and Humanism are to
be understood in the following pages.

Mathematics Defined.' After many centuries of endeavor it
has become possible in recent years to define Mathematics with a
high degree of precision and clarity. Mathematics may be viewed
as a body of achievements or as an intellectual enterprise. I prefer
to view it as an enterprise, and I define the great term in the fol-
lowing words: Mathematics is the enterprise which has for its aim
to establish Hypothetical propositions. By a hypothetical propo-
sition I mean one that either is stated, or admits of being stated, in
the form, p implies q, where p denotes one or more propositions
(called axioms, postulates, assumptions, or primitive propositions),
where q denotes a proposition (commonly called a theorem), and
where the verb implies is intended to assert that q is logically de-
ducible from p.

It is common and often convenient to state a hypothetical
proposition in the form: If p, then q. But here one must be on
one's guard, for it is obvious that many propositions, though stated
in this form, are not hypothetical. For example, the proposition
if it lightcns, then it will thunderdoes not mean to assert that the
proposition, it will thunder, can be logicaPy deduced from the
proposition, it lightens. The test as to whether a proposition of
the formif p, then qis or is not hypothetical is whether the
assertor is intending, or not intending, to assert that q is logically
deducible from p.

It is to be carefully noted that a hypothetical proposition is

1 For a full exposition of this and kindred conceptions the reader may be re-
ferred to my book, The Paotura of Wonder, Columbia University Press.

36
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true or false according as the asserted deducibility is or is not
possible.

A mathematical proposition is a hypothetical proposition that
has been established. And an "established" proposition is one that
is so spoken of, so regarded, so treated, by all or nearly all experts
in the field or subject to which the proposition belongs.

The foregoing conception of mathematics gains in clarity by
viewing it side by side with the following conception of Science.
This term ought, I am convinced, to be defined as follows: Science
is the enterprise having for its aim to establish Categorical propo-
sitions. A categorical proposition is one stating that such-and-such
is the case, regarding no matter what part or aspect of the actual
world. A categorical proposition, no matter what its form, never
asserts logical deducibility, or implication, but, as I have said, a
l,ypotlletical proposition always does.

By mathematical method I mean all available means estab-
lishing hypothetical propositions. Of these means, one is
always absolutely indispensable. I mean Deduction; all other
means are but auxiliary thereto, mere servants or helpers, never
adequate in themselves. The law is: No deduction, no mathe-
matics.

By scientific method I mean all available means for establish-
ing categorical propositions. Of these means, one is sovereign,
always absolutely indispensable. I mean Observation, all other
means are but auxiliary thereto, mere servants ur helpers, never
adequate in themselves. The law is: No observation, no science.

In mathematics Deduction is supreme, observation and all other
means subordinate.

In science Observation is supreme, deduction and all other
means subordinate.

Types of Humanism. As for Humanism, it is especially im-
portant to indicate the sense in which the term is to he employed
in this essay, fur that fine old word is to-day used in such a variety
of incompatible senses that, unlike the term mathematics, it cannot
now be said to have a standard signification. And so there are
I-nnanisms and humanisms. It will, I think, be a helpful prelim-
Mary to signalize some of them.

There is, fur example, the recently much-discussed Humanism
which Professor Irving _Babbitt ks been endeavoring for two or
three decades to formulate and foster by means of leeturei. essays,
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and books, and which he and fourteen other representatives of his
cult set forth a few months ago in the form of a symposium en-
titled Humanism and America, edited by Mr. Norman Foerster.
In his editorial preface Mr. Foerster tells us that "Professor Babbitt
has done inure than any one else to formulate the -roncept of
humanism," 1111(1 that he is, in Mr. Foerster's opinion, "at the center
of the humanist movement." It is, then, not strange that Pro-.
fessor Babbitts Nile in the symposium is that of official definer.
Mr. Babbitt teli., us at the beginning of his "Essay at Definition"
that definition is "indispensable." Naturally the reader is glad-
dened by the prospect of finding here an authoritative formulation
of the proper meaning of the great term Humanism.

What, then. is Professor Babbitt's definition of that term? He
states it in these words: "Humanists are those who, in any age,
aim at proportionateness through cultivation of the law of
measure." In point of form the defirition good. but what of its
substance? No mere hitching togethel of such hazy verbal abstrac-
tions eau convey any definite idea. Obviously the definition is
sadly in need of interpretation. The entire essay may be viewed,
and was doubtless intended to be viewed, as an attempt at such
an interpretation. And what is the interpretation? It consists
mainly of fragmentary descriptionof scattered bits of description
of what Professor Babbitt means by Humanism. Mathemati-
cians need not be told that there is a radical difference between
description and definition. Of Mr. Babbitt's scattered bits of de-
scription some are positive but most of them are negative. The
most revealing of the positive bits arc these: The humanist "may
work in harmony with traditio:lal religion, yet lie says with Pope,

Presume not God ti scan:
The proper study Of mankind is man;

his central maxim is 'Nothing too mull"; like .Milton he regards
decorum as the "grand masterpiece to observe"; his final appeal is
to intuition; the basis of the pattern be imitates is not divine but
is "the something in nians nature that sets him apart simply as
man from the other animals"; humanism manifests itself primarily,
"not in the enlargement of comprehension and sympathy," but in
"selection," in the imposition of "a scale of values-; like Matthew
Arnold, the humanist "hates all overpreponderance of single
elements"; he aims at approximat'ng ever nearer and nearer to
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"perfect poise"; for the humanist th, universe is sundered by a
variety of old dualisms, the psychical and the physical, the sub-
jertive and the objective, the properly human and the subhuman
or natural, the properly human and the superhuman or super-
natural, "law for man" and "law for thing,'' the free and the
determined; essential for him is the "higher will," here called the
"higher inimetliacy," whose function it is to control the "lower
innnediacy"---"the merely temperamental man with his impressions
and emotions and expansive desires.-

Such are the positive bits of description, here assembled (not
m it bout labor) from various sections of Mr. Babbitt's essay. Most
of them have lung been familiar suggestions of the ideal and many
of them are admirable. No doubt they help us somewhat to under-
stand what it is that Professor Babbitt's definition of If innani$m
is intended to define. We must not be too sure, however, what these

Isitive bits are designed to describe until Mr, Babbitt has in-
terpreted them fur us. In interpreting them he has supplemented
them with many descriptive bits of the negative kind designed to
tell us what Humanism is not. In the light of these negations we
perceive that Mr. Babbitt's brand of Humanism is almost incredibly
strict and exclusive,

Amazing, vast, auk., very impressive is the array of human in-
trests, points of view, cults, activities, enterprises, personalities,
enthusiasms, aspirations, dreams, that Mr. Babbitt, either explicitly
or by implication and with the air of pontifical authority, excludes
outright from the category of things humanistic. All monists (who
deny or question the tenability of the old fainiiiar till:distils. and
attempt to View the nuiverse as a genuine cosmos sonnshow involv-
ing the unity of Nature and Man), all naturists who believe that
"out of the earth the poem grows like the lily or the rose"), all
humanitarians (artuatcd anti sustained by fait h in t he endless
perfectibility of mankind), all romantici.ts, all determinists, all
realists, all the philosophers who regard the One as a "concept"
instead of a "living intuition,- all the colleges and universities and
()thew educational institutions that "proclaim the gospel of service,"
all pragmatists, all psychologists, all devotees of science, all

is texvept specialists ill Mr. Babbitt's variety of Human-
; all of these anti yet other kiwis of the unworthy are rigor-

ously excluded by Mr. Babbitt froni his hunianiA iv t
To admit men and women having any essential similitude to such
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as Epicurus or Lucretius or Nietzsche or Shelley or Shakespeare
or Rabelais or the Walter Paters or the Rousseaus or the Walt
Whitmans or the William thuneses or the Benedetto Croces or the
Thomas Ilardys would he to profane the sacred temple, and so
they are debarred. Debarred also, by the clearest indicia of Pro-
fessor Babbitt's conception of Humanism, are such creators of
psychic light as Spinoza, John Locke, David Hume, Euclid,
Newton, Einstein, Willard Gibbs, Lobachevski, Riemann, Gauss,
Laplace, Lagrange, Charles Darwin, Herbert Spencer, Henri
Poinear6, Louis Pasteur, to name only a few of the greatest of the
great Unfit.

It is evident that Humanism, as conceived by Professor Babbitt,
is too lacking in catholicity, in spiritual amplitude, in magnanimity,
to attract any one except. Mr. Babbitt, his disciples, and fellow
symposiasts, who regard it as the sole remedy for healing the cul-
tural maladies of the world, especially in America, and as the sole
means for qualifying human individuals to represent worthily, in
their life and work, the great potential dignity of Man. Some have
called it "academic" or "striet'' or "doctrinal" Humanism. It
might be described, not inaptly, as supercilious, sectarian, phari-
saical, arrogant. "It is," as Doctor H. S. Canby has said, "a very
porcupine hunched up against our familiar world." Speaking of its
central standard of literary excellence, Mr. Henry Hazlitt has
written: "We are above all to judge a writer, not by his originality
or force, not by his talent or genius, but by his decorum! That
is, we are to praise him for a virtue within the reach of any learned
blockhead."

Very different from the foregoing is the type of Humanism
delineated and advocated by Charles Francis Potter in his beauti-
fully written, sympathy-winning book Humanism: A New Religion
very different in content, in manner, and in spirit. For Mr.
Potter and his kind, "Humanism is faith in the .supreme value
and self-perfectibility of human personality." It might be called
human Humanism or nontheistic Humanism because, though it be-
lieves in man, it does not believe in a supernatural God. Mr.
Potter's conception of Humanism as a religion is probably due to
the fact that he was bred in, and for many years practiced,
theology. His religion, however, has recently undergone a great
change. for he now agrees with Ames that "religion is the con-
sciousness of the highest social values" and with Haydon that
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"religion is the shared quest of the good life." Mr. Potter's re-
ligious Humanism is scientific in the sense that it looks mainly to
science for help in more and more realizing "the twin visions"
the vision "of an ideal developed human personality" ari the
vision "of an ideal commonwealth made up of such personalities."
But Humanism can no more be defined exclusively in terms of
Religion than in terms of Art or Politics or Education or Literary
Criticism or any other one among the great interests of man as man.

A third variety of Humanism is that portrayed in The New
Humanism by Leon Samson. The hook is hold, richly suggestive,
frequently keen, notably omniscient, strangely vislonary, and often
flamboyant. Mr. Samson's so-called Humanism might be fairly
described as loquacious Humanism, for, says he, "There is nothing
that so unmistakably marks a man human as his capacity to talk";
or it might be called proletarian Humanism, for "the prized jewels
of contemporary society will be turned to ashes when the pro-
letariat lights the fire of life and love on the funeral candles of
civilized culture"; or it might well be designated utopian or elysian
Humanism, for it envisages a planet-wide community of humans
who, having outgrown both war and work and the making and
reading of books and all religions and morals and governments and
fill other historic or existing institutions, will thereafter devote
their unbroken leisure ecstatically to endless conversationto
honest, original, infinitely varied and, of course, unfatiguing musical
discourse by word of mouth.

The Proper Meaning of Humanism. It is hardly necessary
to say tl.at in dealing with the humanistic hearings of mathematics
I shall have in mind a conception of Humanism vastly different
from any of the foregoing varieties. It cannot be defined in terms
of Mr. Babbitt's "decorum," "proportionateness." and "law of
measure," nor in terms of Mr. Potter's excellent. "religion," still
less in terms of Mr. Samson's wholly fatuous proletarian dream.
Indeed I shall not attempt to define it at all. For. as in the case
of ninny another great idea--that of justice, for example, or wisdom
or poetry or knowledge or truth or religion or art or loveits
significance is too immense, embracing too much of life, to admit
of being confined in a precise formula. But, though it cannot be
neatly defined, it can he described well enough for the purposes
of identification and recognition. In respect of brevity, clearness
and comprehensiveness, combined, the hest description I have en-



42 THE SIXTH YEARBOOK

countered is in the following words of Mr. Walter Lippmann:
Humanism "signifies the intention of men to concern themselves
with the discovery of a good life on this planet by the use of
human faculties." The Humanism indicated by that description is
in spirit, in aim, and in implicit scope, identical with the Humanism
which, beginning in the fourteenth century, sprang into full life and
greatly flourished throughout the fifteenth century as an essential
part of f he Renaissance, first in Italy and later in other countries
Of Europe. The term humanist, which then came into use, wasapplied to those men who, by their activity, proelainied the full
recovery of a very precious and very powerful human sense, one
that had been lost and almost. extliiguished in the preceding long
centuries of submission to external authorityI mean the sense
that humans are, as such, endowed with the dignity of autonomous
beings. potentially qualified by native inheritance 'so judge indi-
vidually and independently in all the great matters of human con-
cern and, by the exercise of their own faculties, to fashion their
lives worthily.

That sense of personal autonomy is essential to the proper
dignity of man and it is, as I have intimated, in the central core
of Humanism. The fact is continuously manifest. and frequently
becomes atticulate, in the activity of the great humanists of the
Renaissance. Let me cite one or two examples. One of the most
illustrious humanists of the fifteenth century was Pieo della
Mirandola. in his famous Oration on the Dignity of Man he rep-
resents God as addressing Man in the following remarkable words:
"The nature allotted to all other creatures restrains them within
the laws I have appointed for them. Thou, restrained by no nar-
row bounds. shah determine thy nature thyself accordhn, to thine
own free will, in whose power I have placed thee. I have set
thee midmost the world in order that thou mightes the more con-
veniently survey whatsoever is in the world. . . . Thou shalt have
poker to decline unto the lower or brute creatures. Thou shalt
have power to rise unto the higher, or divine, according to the
sentence of th\ intellect." Note Pico's vigorous assertion of the
autonomous nature of Man, and observe, too. now perfectly his
utterance times with the following words of another eminent
humanist of the time, Leon Br.ttista Allierti "Men can do all
things if they will." Having in their hearts so living n sense of
personal sovereignty it is to wonder that the great humanists of
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that period cast off the shackles of ecclesiastical authority, and
it is no wonder that they were so eager in seeking, mastering, and
emulating all that remained of the literature, philosophy, science,
and art that had been Treated by the great humanists of antiquity.

Humanistic Education. I hope that I have now sufficiently
intimated what it is that the term Humanism is to stand for in
the following discussion. As most of those who will read this essay
are processibnal teachers I will try to view my subject from the
tandpoint of an educator and will deal with it, as an educational
t heme.

By humanistic education I mean education having for its aim
to qualify human individuals to represent worthily, in their life
and work. the great potential digLity of Man. In other words, I
mean education characterizeu by the aim of qualifying human
individuals to discover" orwhat is tantamountto create "a
good life on this planet by the use of human faculties." I say
"on this planet" because in all times the great humanists have
been sane enough to concern themselves primarily, if not exclu-
sively. with mundane affairs, with means to excellence of life here
upon the earth. The discerning reader will readily see that the
two statements of aim are virtually equivalent.

It is obvious th..t in humanistic education we are concerned
with the liiirliest and most composite of genuine ideals. "Com-
posite" because it embraces many other ideals which, though they
are also genuine. are suborriinate and auxiliary, for genuine ideals
constitute a hierarchy of dignities. In this connection I cannot
refrain from saying, what I have repeatedly said elsewhere and
shall never miss an opportunity to say, that genuine ideals are not
goals to be reached but are perfections to he endlessly pursued.
Genuine ideals are like those mathematical limits whose variables
apimmeh them ever more and more nearly but never attain them.
I know not how to condemn with sufficient severity that all too
familiar philosophy, for it is now in much vogue, which counsels
us to eschew genuine ideals on the alleged ground that, because
they are unattainali!e, they tend to dishearten and devitalize. To
hearken to that counsel is to turn away from the most powerful
hire!: to excellence. For it is pursuit of unattainable ideals that
has led to the great triumphs of the inenan spirit in every depart-
ment of life. It is indeed the proper vocation of man.

In the theory of humanistic education it is necessary to dis-
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tinguish between a human being and the mere follower of a human
pursuit. As animate creatures inhabiting a world where we humans
are obliged, like the animals, to win our lives from day to day, we
all of us are, or are destined to he, in some sense, hewers of wood
and drawers of water. And so we all of us require vocational or
professional training. We cannot escape the necessity of being
specialists of one kind or another. The ideal of such training, the
ideal of specialism, is efficiency. But efficiency is not. the ideal of
humanistic education. For humanistic education aims at the de-
velopment and the disciplining of the whole man. And the man
building a bridge is immeasurably greater than the engineer; the
man teaching the calculus is infinitely greater than the mathema-
tician; the man cultivating fields is vastly greater than the farmer;
the man painting a picture is incomparably greater than the nrtist.
Humanistic edneation does not exclude the ideal of efficiency.
What it disowns is the ideal of mere efficiency. The ideal of
humanistic education is intelligence, emancipation, magnanimity:
intelligence regarding the human and the non-human worlds; eman-
cipation from every manner of trivial or sordid things, emancipa-
tion from provincialism, from fanaticism, from bigotry, from
prejudice, from the multiform tyranny of fear; and magnanimity,
largeness of mind and spirit, imagination enough and sympathy
enough and reason enough and emotion enough and will enough
to gain and maintain the lordly poise of a freeman amidst all time
trials and frustrations encifintered in a vast, complicate. perplexing
world.

Great Permanent Facts of Life and the World. It is obvi-
ous that humanistic education aims to orient and discipline our
human faculties, not with special reference to the technical require-
ments of any given pursuit, no matter what. but with reference to
all the great permanent massive facts of life and the world. A
little reflection suffices to show that there are such facts.

One of them is the fact that every human beim, has behind
him an infinite past out of which he has come and which contains
for his guidance and edification the records or the ruins of alt the
experiments that man has made in the art of living in the world.
It follows that humanistic education will not neglect the disciplines
of the history and the literature of antiquity.

Another of the great abiding massive facts of life and the world
is the fact that we humans are constrained by forces beyond our
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control to live, not in isolation, but in human society; that we are
literally born members of a thousand teams with wkich we must
learn to coiiperate in some measure or perish. It is, therefore,
evident that humzuti..tie education is bound to provide disci-
pline in political science, in social science, in ethics, and in
jurisprudence.

A most impressive member of the group of great permanent
massive facts of life and the world is the ubiquitous presence of
Beauty. Beauty is the most precious and the most vitalizing
element in the universe. More than aught else it is beauty that
not e.21y makes life worth living but makes it possible; for if by
some spiritual cataclysm all the beauty of nature and all the
beauty of art and all the beauty of thought were suddenly blotted
out, our human race would quickly perish by depression of spirit
owing to the omnipresence of ug,liross. Consequently humanistic
education will fashion itself in large measure by the consideration
that those who are to be qualified for the discovery or creation of
a good life must needs have taste in. the arts of men and an
awakened sensibility to the marvelous natural beauties of Ian i and
sea and sky.

Mathematics and the World of Ideas. Among the momen-
tous facts with reference to which it is the function of humanistic
education to orient and ("scipline our faculties I have now, finally,
to signalize the stupendous fact denoted in German by the term
Grdankentceltthe world of Ideas. For equipping one to deal with
ideas as suchto deal with them, that is, in accord with the laws
of flint ght, in accord with he standards of rigorously sound think-
ingthere is but one available diseipline, and it is that of logic
and mathematics. In deference to conservative usage I have said
logic, and mathematics, though the maturest critics regard the two
as one. It is evident that to he set in right relation to the world
of ideas, though it is not alone sufficient, is certainly necessary, to
qualify one to represent worthily the proper dignity of man. We
are thus bound to say that, for humanistic education. logic and
mathematics constitute not merely a useful discipline but one that
is indispensable.

Attitudes in Mathematical Study. The fruits of that dis-
cipline naturally vary with the attitude of the student in pursuing
it. and the student's attitude may be any one of three. He may,
that is, pursue mathematics for its own sake or for the sake of
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its uses and applications or for the sake of what I shall call its
bearings.

One who pursues mathematics for the sake of mathematics is
sustained by its charm. Having gained some knowledge of it, lie
craves yet more, and what he has gained at any stage equips him
for further gain. If he he a research mathematician, the investig-
tions he makes lead him to further investigations. and so on end-
lessly. The attitude of such a student. reminds one of the fanner
who. when asked why he raised so much corn. replied, "In order to
feed hogs," and when asked why he wished to feed so many hogs,
replied, "In order to buy more land," and when asked why he de-
sired more land. replied, "In order to raise more corn." I am not
condemning the attitude, far from it, but, merely indicating it.
This attitude of the mathematician is indeed well justified by two
considerations. One of them is that. he has great joy in the game.
and any one who has felt the joy knows how sustaining it is. The
second consideration is that, if mathematicians did not pursue
the subject without regard to its applications or uses. then. when
mathematic-11 doctrines are needed as instruments in the develop-
ment of other scientific subjects, the required doctrines would not
he in existence. Moreover, one of the important lessons of history
is that doctrines created for the mere joy of creating them, created.
that is, without regard to any question of applicability, are sooner
or later fove,(1 to be applicable and thus acquire a secondary type
Of justification. A familiar example of this very significant fact
is afforded by the theory of conic sections, which was essentially
worked out for the pure intellectual joy of it long before it found
application in astronomy and navigation. A more recent and even
more striking example is that of the frightfully complicate Theory
of Tensors. established by Riemann and Christoffel long before
the "idle theory" became, at the hands of Einstein and his fello.:.
the "backbone" of the General Theory of Relativity. In this con-
nection I must repeat one of the delightful stories told of J. J.
Sylvester when he was professor of mathematics in the Johns
Hopkins University. One day as he was crossing the campus he
encountered a notably practical-minded colleague, who said to him:
"Professor Sylvester. what subject are you lecturing on this term?"
The great mathematician replied: "On the Theory of Substitution
Group:? " "What," asked the practical man, "is the uRe of that
theory?" "I thank God," said Sylvester, "that so far as I know it
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the number-concept, from the rudest beginnings in primitive mind,
long before men had learned even the first steps in the process
of counting. to the great number-creations of the modern world?
The concepts of Integers and Fractions, of Cardinals and Ordinals,
of Positives and Negatives, of Rationals and Irrationals, of Rea ls
and Imaginaries, of Algebraics and Transeendentals, of Finites and
Infinites, these great concepts viewed with the occasions of their
rise, with their struggles for existence, their ultimate triumphs over
stubborn opposition, their persistent. hardy growth through the
centuries, their countless diversifications and subtle refinements, the
infinite network of their interrelations and their manifold, always
increasing. practical and theoretical uses and applications, afford
a series of scenes that, for any one who has once contemplated
them, constitute a truly unforgettable and inspiring panorama of
the march of mind.

Mathematics One of the Humanities. It remains to consider
the attitude of one who pursues the study of mathematics. not for
the sake of mathematics, nor for the sake of its uses and applica-
tions, but for the sake of its hearings. By the bearings of mathe-
matics I mean the relations of mathematical ideas, processes, and
doctrines to such great. human concerns as are not, strictly speak-
ing, mathematical. One who pursues the study with a view to its
hearings can hardly fail to discover that, by virtue of its humanistic
significance and worth, mathematics is entitled to high rank among
the great Humanities. For what are the subjects that are best
entitled to be listed among the humanities? It can hardly be
doubted that the answer ought to he this: Those subjects have the
best datum to be called humanities which best serve to reveal +he
nature of our common humanity and best serve for the guidance
of our human life.

It can he readily shown, I think, that, according to the double
criterion just stated, the claim of mathematics to he regarded as
one of the humanities is unsurpassed, Let us examine the matter
a little. We must begin by asking: What is the chief mark of man
as man? What. is the defining quality or character of the essential
nature of our common humanity? What is it. that serves best to
(11:AC1'1111111OP lwings from all other kinds of living creatures?
The answer. I think, is this: The chief characteristic mark of man
as man is what Count Alfred Korzybski in his hook, The Manhood
of Humanity, has called the time-binding enpacity of human
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beings. The fine term denotes that highly composite faculty in
virtue of which each generation of mankind is enabled to employ
the accumulated achievements of the preceding generations as
capital for the production of yet greater achievements, so that, as
the generations succeed each other, science begets better science,
philosophy better philosophy, art better art, jurisprudence better
jurisprudence, ethics better ethics, religion better religion, inven-
tion better invention, and so on. By that composite faculty man
is set apart from the animals and the plants. It is the secret. of
the progressability of our human kind. It is the civilizing energy
of the world.

Where does the time-binding power of man make itself mani-
fest? Obviously it manifests itself in the development of all great

subjects and human enterprises. I now ask: Where is this defining

mark of man revealed most clearly? It is most clearly revealed
in mathematics, for in the continuity of the progressive develop-

ment 01 mathematics, running from remote antiquity down through

the centuries and flourishing to-day as never before, the time-

binding power of the human intellect. is not only revealed but
revealed in its nakediasss. I contend that, by this superior dis-

closure of the charaetestic nature of our common humanity,
mathematics conclusively vindicates its claim to distinguished

membership in the assembly of the humanities.
If we turn now for a momeut to contemplate mathematics re-

garded as a guardian and guide of our human life, we shall find

that the foregoing conclusion is abundantly confirmed. As every

one knows, human activity presents certain great distinctive types.

One of the greatest of these types is that which we call logical
--thinking, not merely thinking but logical thinking. the generating

of precise ideas, the combination of them, the relating of ideas in
the forms of judgments and propositions, the uniting of propositions
to form doctrines for the enlightenment of the humah understand-
ing and the guidance of human conduct. Every me knows or ought
to know, for the fact is sufficiently obvious, t above each of
the great types of human activity there hovers a shining ideal of
excellence--La muse, if you will, or guardian angel wooing and
beckoning us upward along the steep endless path toward per-
fection. Now, what is the muse or the angel that lures and sus -

tains our efforts in logical thinking? The name of the muse is
familiarit is Logical Rigor, the name of an austere goddess de-
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manding, though never quite securing, absolute precision; demand-ing, though never quite securing, absolute clarity; demanding,though never quite securing, absolute cogency. Is this unattainable
ideal of absolute rigor a valuable one in the conduct of humanlife? The answer, which cannot be too emphatic, is this In everydepartment of life where thought is required, the standard of logicalrigor is so valuable that just in so far as our thinking departs fromit, our discourse sinks down toward the level of mere chattering--
the noise and gabble of our prehuman and subhuman ancestors.Why is it that the standard of logical rectitude is so clearly
u.,vealed in mathematics? And why is it that mathematics succeedsso famously in approximating conformation to time standard? Thesecret lies in the method of mathematics- -time method of carefullyselected and clearly enunciated postulates, of sharply and com-pletely defined concepts, and of painstaking deductions or demon-strations. Because there is no field in which a worker can escapethe necessity of making conscious or unconscious use of postulates,
nor the necessity of formulating definitions and of attempting de-ductions and demonstrations, it is evident that mathematicalprocedure furnishes a model for the guidance of criticism of alldiscourse of reason, no matter what the subject or field to whichthe discourse pertains.

Mathematics and the Universal Concerns of Man, Timeconsiderations thus far advanced, though fundamental and decisiveregarding time title of mathematics to be listed among time humani-ties, are far from being all that might be adduced. One who open-mindedly contemplates the humanistic bearings of the subject willbe led sooner or later to see that, as 1 have said elsewhere,2 "Every
major concern among the intellectual concerns of man is a concernof mathematics.'' No doubt that statement will seem to some tobe extravagant. Yet time statement is true and the truth of itought to be made known to all. Let me briefly submit a few justi-fying considerations.

Every one knows that among the most impressive facts of ourworld is time great fact of Change. Time universe of events, whethergreat or sniall, whether mental or physical, is an endlessly flowingstream. Transformation, slow or swift, visible or invisible, i3perpetual on every hand. But events are interdependent, so thatchange in one thing or place or time produces changes in other
1pde l'hilwinphy and Other Ensayn, E. 1'. 1Mttun and Company.
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things and places and times, With the processes of change every
human being moron, medioce, or geniusmust deal constantly
or perish. The processes of change are not haphazard or chaotic,
they are lawful. To deal with them successfully, which is a major
concern of man, it is necessary to know their laws, To discover
the laws of change is the aim of science, In this enterprise of
science the id'a1 prototype is mathematics, for mathematics con-
sists mainly in the study of functions, and the study of functions
is the study of the ways in which changes in one or more things
produce changes in others.

We are here in the presence of another bearing of mathematics
upon a major concern of man. I mean our human concern to
ascertain what things, if any, are permanent in the midst of change.
Human beings desire to know what things, if any, abide. We
wish to know what things, if any, may be counted upon. In this
great quest of permanence in the midst of mutation is found the
unity of science, philosophy, art, and religion, for it is the sov-
ereign concern of them all. Is it a concern of mathematics? To
find the answer one has only to glance at the immense mate-
matical literature embodying the truly colossal doctrine of In-
variance.

Next consider the great subject of Relations. Such terms as
spouse, husband, wife, father, mother, parent, child, king, subject,
president, citizen, partner, enemy, friend, greater, less, better, worse,
and so on and on, are familiar examples of relations. Whoever
examines the matter will be astonished to find that most of the
words in any language, either directly or indireetly, either ex-
plicitly or implicitly, denote relations. Each thing in the world
has named or unnamed relations to everything else. Relations are
infinite in number an in kind. Being itself, said Lotze, consists
in relations. Science, said. Henri Poinear6, cannot know "things"
but only "relations." To be is to be related. To understand is
to understand relations. To have knowledge is to have knowledge
of relations. It is evident that the understanding of relations, the
gaining of relation-knowledge. is a major concern of all men and
women, whether they arc aware of it or not. Are relations a con-
cern of mathematics? They are so much its concern that able
critics have thought it possible to regard mathematics as having
relations as its sole concern.

I have thus far said nothing explicitly regarding morals and
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religion. Undoubtedly these are among the major concerns of man.
A word regarding ethics. We know that, in any fairly stable
community, no matter how primitive, no matter how civilized,
there gradually rise and ultimately prevail certain sentiments re-
garding "right" and "wrong," regarding "good" and "bad," regard-
ing what "ought" to be, and "ought" not to be, in human conduct.
These sentiments get themselves expressed in the forms of maxims
or propositions. The propositions are regarded by all, or by most,
members of the community in question as embodiments of ethical
knowledge or truth. The body of propositions is an ethical system
grown out of experience. Such systems vary from community to
community, and from period to period in the life of a given com-
munity. What service can mathematics render in connection withsuch a system of ethics? The question has been well answeredby Jacques Rueff in his excellent little book, Des Sciences
Physiques aux Sciences Morales. He has here shown that, in the
case of any such system, it is always possible to find a set of prin-
ciples or postulates from which the propositions of the system canbe deduced as consequences in the mathematical manner. In this
way an ethical system rises from the level of experience to that of
a logically or,.,4mzed doctrine. The transformation is one im-
periously demzinded by the human intellect. Moreover. by such
a transformation an ethical system is shaped for criticism. Andthis is well, for, as Cousin long ago said, "La critique est la vie dela science." I should add that Rueff's book has been translated
into English and published by The Johns Hopkins University Press
under the title, From the Physical to the Social Sciences.

The bearings of mathematics upon religion are treated by
another essay in this volume. I will, therefore, content myselfwith a single relevant observation. It is that the concept of in-
finity which is involved in the great question of limn; rtality, is
dealt with in mathematics, but nut elsewhere, in strict accord with
the standard of logical rectitude.

In the light of what has been said and suggested in the fore-
going discussion it is abundantly evident, I believe, that, among
the agencies for qualifying human individuals -to create a good
life on this planet by the use of human faculties.' or to represent
worthily, in their life and work, the great potential dignity of Man,
Mathematics is unsurpassed.



MATHEMATICS AND RELIGION
BY DAVID EUGENE SMITH

Teachers College, Columbia University, New York City

The Bonds Between Them. It is one of the tendencies of
the mind to look upon its own major interest as the focus of all
knowledge. The mina tends to see analogies that are, at best,
remote.; to magnify the influence which its own favored science
exerts upon all other branches of knowledge; and to feel that it
detects bonds which do not exist. The poet, for example, sees
in the Book of Genesis a magnificent prose poem, the uplifting
power of which vanishes when he thinks of it as a treatise on
natural science. The mystic sees in the Old Testament a field of
what lie feels is mysticism, and he reads into it a harmless ob-
scurity that pleases him and has the merit of injuring no one else.
The Christian apologist finds in its inaccuracies, as that 7E (pi)
equals 3, the errors of sonic ancient copyist, instead of frankly
recognizing that the one who wrote that particular verse simply
used the everyday common value adopted by the people of his
time. The mathematician may, for a similar reason, tend to
exaggerate remote analogies and to assert a closeness of relation-
ship between his own field of interest and that of the theologian
that. is, in fact, very attenuated. In speaking of this relationship,
therefore, one must always be on his guard against trying to see the
invisible or to imagine that which has no existence. So much for
the initial objection of those who look upon knowledge as made
up of separate and distinct domains.

The bonds uniting mathematics and religion have often been
considered, and many have been the monographs written and the
words spoken upon the subject. The trouble is that the attempts
have generally concerned the theologian on the one side and the
mystic with some knowledge of elementary mathematics on the
other. They have only rarely been made by either the seeker after
the good, the true, and the beautiful in religion, on the one side,
or the constructive mathematicio!, cf genius on the other. Even
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The Infinite. First, mathematics soon leads us to a feeling
that the Infinite exists. The inquisitive child shows this when lie
asks his teacher what is the largest number; and the teacher shows
it in her inability to reply. This feeling grows more impressive when
the child becomes the youth and studies any elementary series,
even the summation of ri terms of the geometric or any other type.
It increases when lie studies geometry and wonders what happens
to the sum of the angles of a triangle when the vertex is "carried
to infinity," and when lie asks the teacher what infinity means.
It inereases when lie' studiei simple trigonometry and finds that,
as an angle approaches 90' the tangent approaches infinity, sud-
denly becoming minus infinity when it passes through the right
angle. It when, if ever, lie becomes a scholar in mathe-
matics, and deals the infinities of higher orders, with trans-
finite numbers. with the ,,veral plans of representing infinity
graphically, and with the infinity of time and space, or with the
finiteness of each. And finally. when he measures the known uni-
verse, or universe of universes. and thinks in light years (the
distance that light travels in a year), and finds that the distance
across explored space may be 400.000,000 of these light years, and
lets his imagination carry him to the verge of this space and leads
him to wonder about that which lies beyondthen the mystery
becomes overpowering. lie has pushed back the clouds of igno-
rance only to see that his own ignorance has become more and
more ho!leless, and that science leaves him helpless in the presence
of a new infinity. The childish boast that we will believe only
what we see, the most childish of all our feeble assertions of our
faith in our puerile strength, avails us not. Mathematics has
lured us on, and at the last we feel more helpless than ever, be-
cause we have come to see how full of awe we are in the presence
of the awful Infinite.

The Changing Bases. Again, the yorth need not even reach
the legal age of the adult before allot hal, fluid of mysteries tends
to engulf hint. Ile is taught in mathematics that certain postu-
lates are ,acred and that lie must not question them. In religious
instruction lie is taught the saute. Iii mathematics he will be en-
couraged by any honest and capable teacher to see that certain
postulates mu e. not always true: in religion lie may be condemned
if he queries certain others. In general, many teachers ill each
domain display a kind of fear of lamest inquiry, a fear based either
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upon ignorance, or upon faith in tradition. No field of mathe-
matics need fear searching inquiry, and no religion or sect need
fear the scientific study of its essential nature, however much it
may fear a study of the nonessentials which have accumulated
through the ages. In mathematics it is evident that each of these
oeries has the same number of terms, however far we go:

.

1 2 3 4 5 6 7 8 9 10 .
2 4 6 8 10 12 14 16 18 20 .

for each term of the second is formed from the term of the first
that lies just above it. If, therefore, the number of terms of each
is unlimited, the number in each case may be said to be the same.
But the second series is a part of the first, consisting of every other
term. Hence, in this case, the part is equal to the whole. The
illustration is a common one, and equm my common is the one which
shows that the infinity of points in one line is the same as that
in a line twi,.e as long, or half as long, or one-tenth as long, or a
million times as long. Therefore the youth in school readily collies
to the stage at which he sees that postulates that are valid for
time small field in which he has lived, and that are necessary in
such a domain, cease to be so when he faces the Infinite. A postu-
late is an assumption of validity in sonic special region; but we
outgrow postulates as we outgrow clothes, whether in mathematics,
in physics, in behavior, or in any other domain, substituting new
ones which appear to have validity in the new region of thought
in which we find ourselves. When Einstein made known his theory,
it did not destroy Newton's postulates in gravitation, or his laws.
These are valid up to a certain point, or at least are practically
workable. Ile simply took the next step. When Lobachevsky
and liolyai proelaimed their theory of parallels, they did not de-
stroy uclid's postulames; they simply assumed another set and
worked out a new lot of conclusions. In ordinary finite space,
Euclid's geometry is a workable one; in spare in general the other
has advantages. Euclid tacitly assumed that spare was every-
where alike and that a straight line, however far produced, never
returned into itself; modern writers tend to assume that space is
curved and that what we think of as :1 straight line is like a great
circle on a sphere, always returning into itsrlf. Mat ...matics
simply says, -II this, then that"; it does not say, "This is eternally
true, therefore that is eternally true.'' It never fears to have a
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Is it through a fourth dimension, which scientists now come to con-
sider a commonplace idea? If so, what other spaces are there and
what is their nature? Not without value are the rather childish
considerations of Flatland and its inhabitants, and of the way in
which a four-dimensional being may look at us and at the lives
we live. If this raises the question of other spaces, of other uni-
verses of universes, the speculation, immature though it may be.
has value. It places religion in a new light, it sets new bounds to
human impotenee, and it takes away the boastfulness of a mind
characterized by "arrested development." The same influence
comes with respect to time. Is it, like space, a closed affair, re-
turning into itself? Is it. like length, a dimensionthe fourth
dimension? We can point to the north. but can we point to
to-morrow? Time has llw elements of a dimension but we are too
three-dimensional-minded to point to time direction it takes.

Algebra, like geometry, leads us to similar speculations. The
equation 2x + 3y == 6 is represented geometrically by a straight
line in a flat surface (a space of two dimensions) : 2x + 3y + 2 = 6
is represented geometrically )y a plane in our space of three dimen-
sions: but what about the equation 2x + 3y + z + 4w = 6? Have
our dimension:- given out? Should it be a solid in a space of four
dimensions? And if so, where shall we end in our speculations?
Into what kind of a super-cosmos are we being led? People say.
"1 will not believe in God," but they believe firmly in Nature,
and most of them have the faint remnants of a belief in signs, in
omens, in luck. and in looking at the new moon over the right
shonhiel. They will not believe in any possibility of a world
beyond. but they will see the entire possibility. and at present they
believe in the probability. of a dimension beyond our own. It is a
curious situation, this religious skepticism. and it would scent that
it would tend to vanish if the theologian were not afraid of honest
search after the fundamentals of religion. This. at any rate, has
been the result in the fields of mathematics and of science.

Obscurity of Language. Much of mathematics and also of
religion is obscured by the language used. Mathematicians in the
sixteenth century spoke of negative numbers as "fictitious" hut as
soon as it was found that they could be represented graphically
and used physically. they ceased to be such. They then heeame
no more fictitious than a fraction. for we can neither look out of
a window of a time nor hook out of it, 2 times. Each number
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that quartz always crystallizes as a hexagonal prism joined to a
pyramid and that the bee's cell patterns after it, and has clone so
for millions of years and will do so for billions more, With the
unseen tendrils of his mind he grasps the Eternal. No book, no
priest, no teacher, no authority has led him to see that the certain-
ties of mathematics ha\ e helped to conquer what he considered his
certainties of childhood. The essential features of religion offer
no difficulties that differ greatly from those which he may easily
conquer in the domain of the Mother of Sciences.

Do children get this from their mathematics? Not when led
by teacher;; %vhose minds and interests have never seen the light-
and so with their courses in education, in science, in history, in
religion, and in art. But a new era in the teaching of mathematies
is dawning, an era in which tradition gives way to a nobler concep-
tion of what all +he sciences mean in relation to one another and
in relation to the higher ideals of humanitythe fine arts, the
cultivation of a taste for better literature. the social life and the
comforts of the world, and the religious instincts of our race.



THE :MAT.11EXIATICS OF INVESTAI..!,NT
ro- WILLI:1'M I,. Il.kIZT

Lan of Minnesota, Minneapolis, Minnesota

PAIIT 1. IsmobtarrioN

Extent of the Discussion. Along the backbone of the busi-
ness vold we find those problems which involve simple interest,
compound interest, and the applications of compound interest in
tl:e theory of both aniatities certain and contingent annuities. The
word annuity lucre refers to any sequence of periodic payments.
The theory of interest and annuities and their applications is re-
ferred to as the In athrrnaties of investment, or the mathematics
of finance; it is a part of the more extended field of actuarial sci-
ence. The mathematics of investment, as distinct from mere arith-
metic, is at the foundation of scientific banking. accounting, bond
practice, all forms of artivity involving the investment of money
and the discharge of debts 1411:Ocularly the discharge of debts by
sequenres of periodic payments, life insurance, and life annuities.
In the present chapter, wi shall discuss the theory and applications
of simple interest, compound interest, and annuities certain. We
shall not consider the theory of contingent annuities, and their
applications, whieh occur mainly in a treatment. of life annuities
and of life insurance. This aspect of the mathematics of invest-
ment is not of such general appeal as is the rest of the subjert, and,
moreover, its treatment presents essential theoretical aml notational
difficulties.

Mathematical Prerequisites. A minimum satisfactory at he-

mat ic:al background for the study of the elements of the
mathematics of investment consists of arithmetic, and one and one-
half years of high school algela a. Familiarity with the computa-
tional aspects of logarithms is very desirable, but is by no means
an essential part of this background; it is merely convenient to
simplify the arithmetic involved by using logarithms, or. better,
by using a computing machine. In any rational treatment of t he

In:ahem:It les of investment which does not introduce artificial
61
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mathematical difficulties merely as theoretical toys, there is no
nerd of the use of logarithms in solving exponential equations,
Or other advanced topics in the theory of logarithms. In the
present chapter, logarithms will be referred to only in brief dis-
cussions where an effort will he made to properly gauge their use-
fulness. or the necessity for their presence. Knowledge of the
formula for the sum of a geometrical progression i the only item
of the theory of progressions which will be needed, and this for-
mula will he used only once in the chapter. This rather extended
discussion of the rifle which logarithms and progressions will play
has been given in order to dispel at once an all-too-prevalent no-
tion that the mathematics of investment is heavily dependent. on
progressions and logarithms. A proper foundation for the mathe-
matir of investment consists mainly of good arithmetical skill.
that familiarity with the use of liter:II numbers and algebraic
manipulation which results from one a I one-half years of algebra,
and stud' maturity of experience as 1S possessed by students of the
senior high school, or higher levels.

Historical Background. The mathematics of investment
developed very (ally, along with the use of interest in financial
transactions. From the year 1202 onward. books on mathematics
included prob. 'mss concerning both simple interest and compound
interest. At an extremely early stage 11 e. find problems of great
difficulty, as juligod from the standpoint of the early mathema-
tician who Inn! neiti,rr the theory of logarithms nor the extensive
modern interest tables nt his disposal. Thus, Fibonacci (12021
proposes the following problem:'

A certain man puts one denariu at- interest at suril a rate that. in five
year.: It: has two denarii and in every five years thereafter the money
doubles. I ask how many denarii he would gain tita this one denarius iti
100 years.

In Tart a uwral Trattuto (155(1) . we meet the follow-
ing problem2 whose solution by 'rant aglia, with his inefficient
mat hemat lea! tools. demanded great- ingenuity:

A merchant ga%. univ..rsity 2.81-1 ducat:i on the understanding that he
W:IF to pay 615 ducats a yeLr for nine yea,.s, at the end of which the 2 814
clueats should he considered as paid. What interest was he getting on his
ilioncy?

Cora Sanfurtl. .1 Short tory t,l Abfilic»m jem,
Compn nY. 1 ti:: 11.

V,rit zsattford. op.

Houghton NSStSitn
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any treatment of it at the secondary level, the discus ion of the
present chapter will presuppose no knowledge of the subject out-
side of the familiar facts about simple interest and compound in-
terest.

Outline of the Discussion. Part 11 o: the chapter will be
devoted to a discussion of certain aspects of simple interest, and
of the related topic of simple discount. Admitting that the mate-
rial referred to in Part II is present in high school arithmetic,
Part II aims to orient this elementary section of the subject with
respect to the more advanced portions. The author believes that
such orientation could with advantage be emphasized in the teach-
ing of arithmetic.

Part III will he devoted to compound interest, with emphasis
on simplification of method. Such simplification comes from (1)
the use of the interest period instead of the year as the funda-
mental unit of time in the formulas, and (2) systematic use of
interest table: and interpolation in them, in place of logarithmic
methods.

Part. IV will be concerned with a derivation of the funda-
mental annuity formulas, and their application in various types
of problems. The length of Part IV, relative to Parts II and III,
does not properly indicate the flitstanding importance of Part IV
in the mathematics of investment. Lark of space for descriptive
material makes it impossible to present. more than a brief indi-
cation of some of the many applications of annniTies certain.

PART II. SIMPLE INTEREST AND SIMPLE DISCOUNT

An Algebraic Treatment of Simple Interest. At any
school level beyond that on which the student has dealt with linear
equations, the treatment of simple interest and its applications
should be definitely tied to the familiar equations:

/ = Prt; (1)
S P -4,- /; (2)
S= P(1 rt). (3)

In these equations, P is the original principal, r is the interest
rate, expressed as a decimal. t is the time of the investment, ex-
pressed in years, I is the imerest earned by P in t years, and 8 is
the amount due at the end of t years. We should not confuse the
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student byh long- winded word-descriptions of how to find the rate
when the principal, the interest, and the time are given, or of how
to find the principal Nam the amount, the rate, and the time are
given. Ile should be taught. to substitute given quantities in prop-
erly st,leeted equations, anti then to find the uuknowns by the nat-
ural algebraic procedure.

In a treatment of the mathematics of investment, simple in-
terest is important not only on its own merits but also as a means
of presenting the important terminology of present value, amount,
accumulation, and discount under a simple guise. In equation
3, we call P the present value of the amount The possession of
P to-day is just as desirable as the possession of S at the end of t
years. With account taken of the effects of interest, P and S are
equirah nt sums of money due on different dates.

To ace/cm/date a principal P for t years at the rate r means to
find the amount S due at the end of t years if Pis invested at the
rate r. To discount an amount S for t years means to find the
present. value of S on a day t years before it is due. The discount
on S is the difference between S and its present value 1', or is
(SP).

EXAMPLE 1. (a) Discount $1,150 for 21,:i years at the rate simple
interest. (1) Find the discount on the $1,150.

Satati,,o. (a) We desire to find the present value of the amount S $1,150,
212 years before it is duo. We uso equation 3 with L = S= 1,150, and
r :

1,150= P[1 +

1'[2 + 5(.055)]
2Z5P=--,

P

2,300.

2.300

2,300
z.275

$1,010.90.

thi prcscnt aluc of 81.150 is $1,010.99, the: discount is 0,150
1.010.90), or 5139.01.

In the preceding example, 5139.01 is the discount on $1,150,
due at the end of years, awl. also, 5139.01 s the interest for
21,:, years on the principal $1.010.99. That t, 5139.01 plays a
double role.

The last paragraph illustrates an if.teri sting fart. From equa-
tion 2, 1 11_Nice, the couti,tity 1, wi,ih w dolinerl
as the ihterr.it ail the P, has inAv been given a second
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I may receive $1,000 from him now ar; the proceeds of my loan? (b) What
interest rate ma I actually paying?

Solution. (a) Interest in :ulvanee, at the rate 6%, means that simple
discount is being charged at the rate 6%. In equations 4, 5, and 6, we are
given 1' = 1,000, t and d = .06. We use equation 6;

1,000= 1/2(.06)1;
.97 S = 1,000;

000S = 1

.
$1,030.93.

97

(b) From Part a, I pay $30.93 interest at the end of 6 months in addition
to the $1,000 which I received at the beginning of the transaction. Front
I = At, with P 1,000, 1= 30.93, and t == 14,

30.93 = 1,000(r)(1;2),
On solving, we obtain .0619. Hence, a rate of 6%, payahte in advance,
on a 6-molt h loan, is equivalent to a charge of simple interest at the rate
6.19%.

The terminology of present value, amount, accumulation. and
discount applies equally well both to simple discount and to simple
interest di-...ussions. To discount an amount S, due at the end of t
years, under simple int(rest at the rate r, means to find P by use
of S= P (1 -I- rt). To discount an amount 5, due at the end of t
years, under simple discount at the rate d, means to find P by use
of P = so. dh. The equations of simple discount. are easier
to apply than those of simple interest, if we desire to find a prin-
cipal P when the amount is given, that is, when we desire to dis-
count an amount S. The equations of simple interest. are easier
to apply than those of simple discount when we desire to find S
when P is given!'

PART III. COMPOUND INTEREST

Definition of Compound Interest. If, at stated intervals
during the term of an investment, the interest due is added to the
principal and thereafter earns interest, the sum by which the Origi-
nal principal has increased by the end of the term of tla. invest-
ment is called corn ponnd interest. At the end of the term, the
total amount due, Which consists of the original principal plus the
compound interest. is called the compound anzmud.

Hereafter, the unqualified word Liz/crest will always refer to
compound interest.

tir Iii'11-,1"11 of I nlations sImpli. simple
(11111.t..r 1 'if tho authur's .11,11ht ,,111,rx of Inrixlistr sit, RI rims!, 1). C.

litlith and I %(Itupitily,
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We speak of interest being compounded, or converted into prin-
cipal. The tittle between successive conversions of interest into
principal is called the convergion period, or the interest period.

Thus, if the rate is (31/4, compounded quarterly, the conversion
period is 3 months, and interest is earned at the rate 6`10 per year
during each period, or at the rate 1.5',1e. per conversion period.

ExAmpLE 1. Find the colu;.ound amount at the end of 1 year if $100 is
invested at the rate 8%, compounded quarterly.

Solution. The rate per conversion period is .02. The original principal
is $100. At the end of 3 months, $2.00 inter( st due; the new principal is
$102. At the end of 0 the intt rt,t due is 2r/e of $102, or $2.01,
and the new principal is ($102 +$2.041, or 814)1.01. In this fashion, we find
that the minutia at the end of 1 year $108.213. The total compound
interest eant:d in the year is $8.213. The rate at wide!) the uri).:inal principal

. 8.2.13increased during the year is or 8.213%.
100

,

Nominal and Effective Rates. In the usual way of de-
scribing a given variety of compound interest, the rate specified is
called the nominal rate. It is the rate per year at which interest is
earned during each conversion period. The (IP etipc rate is the
rate per year at which interest is earned during each year. Thus,
in the preceding example, the nominal rate is 8(7(..; the eeetive
rate is 8.243,-; ; the rate per conversion period is All of these
three rates of interest should lie kept in mind when considering a
given variety of compound int(.'rest.

It is emphasized that, in the future. when we refer to a rate of
interest, we mean a rate per ycur, except when we otherwise spe-
cify a rate per conversion pi riod.

The Compound Interest Formula. Let the interest rate per
conversion period be r, expressed as a decimal. Let P be the origi-
nal principal, and let . be the compound amount to P ac-
cumulates by the end of k conversion peritols. Then, we shall prove
that

S=1)(1+ rik. (1)
Proof. The original princilial invested i P.
Thu interest due at the end of 1st period Pr.
New principal at the end of 1st period is /' Jr ' -1- r.
Interest due at the end of 2d period N r pi 1 I, or Pe (1 +r1.
New principal at tit(' 011(I 4)i 2.1, period is

Pt], r ) -; Pt 1 + r)r n + r), or P11 r
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By the end of each period, the principal on hand at the begin-
ning of the period huts been multiplied by (1 + rl. Hence, by the
end of k periods, Lie original principal P has been multiplied k
successive times by (1 r), or by (1 + r)k. Therefore, the com-
pound amount at the end of L. periods is P(1 + rik, as in equation 1.

The exceedingly elementary discussion leading to equation 1

was not given with the idea that any new facts were being pre-
sented. The object of this discussion was to exhibit the convenience
of the terminology of conversion periods, and rates per period, and
to show how this terminology Icads to a simple general formula for
the compound amount.

As in Part II, we call P, in equation 1, the present value of the
amount TO accumulate P for k vonversion periods at compound
intecst. means to 1111(1 the amount S by 1151' of equation 1.

Ex.\ m Ns 2. Accumulate $300 fur 9t years at 6%, compounded quarterly.
Soiat;on. The rate per conversion period is .06 4, or r .015. 'I'll(:

number of conversion periods is 1: 1. 37. From equation 1,
300( 1.015 )" 3(0 ( 1.7:j18 ) _ : $520.44.

In the solution, we obtained the value of (1.015)47 from Table I, on page Si.

If Table I W01(' 110t :I:Vadat/IC, 11.015)37 would have to he
1w use of logarithms, or, less conveniently, by use of the

binomial theorem. For this reason, one might rashly say that
logarithms were essemial tools for further work. This statement
is unjustified, because fairly complete tables° of compound amounts
are just as accessible as tables of logarithms. The whole discus-
sion front here on presupposes that sonte convenient set of interest
tables is available. For the illustrations 41f the present chapter,
the accompanying extracts of tables are sufficient.

To discouitt 0.11 0.11101111t S for conversion periods means to
find the present value of .S on a day k perioils before is due. To
find I', the present value, we solve equation I for I' in ternoi of
we find P (1 + ki Or

P (2)
eciwition:,. I and 2 ory Notivalma tNe refer to

ti,cto as t1:(' fundatneotal (foal irats (t1 coMpollnd
ExAmPLK Du-rqvint fur 112 YP:11.6 , compounded sem:annually.
Sotio'ion. Iii f fii1.1(ion 2, \\ hate $50, r ", .02, and k 2Ei1)

:7 50(1.02, 50(.5:)76, $41_81.

The di..vouto on the $50 is (50 -11.S11, or $8.16.
see. 1..1- !, Hie nut ldrs from lb, furtxtmnt,

1,. C. 11-.011 1t1;.1:0.
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Comment on the .Fundamental Formulas. Recall that, in
equations I and 2, the unit of time is the ronversion period, and
not one !par; the symbol r is the rate per conversion period;
is the time, expressed ill conversion periods. This feature results
in a worthwhile simplification. It ve bad let n lie the number of
Fears for which P is invested. in be the number of times that
interest is coverted in each year, and j be the nominal rate, then
we would have fianid that

-= / ( 1 + (3)

The greater complication of 3 ) as. compared with ( 1 ), is the
reason why we used the conversion period instead of the year as
the fundamental unit of time for the deseription of data. We do
not employ equation 3. :11(1 recommend its complete submersion.

Compound Interest for Fractional Periods. 'Flue funda-
ental definition of compound interest gives no meaning to the

notion unless the time of the investment i5 au integral number of
conversion periods. That is, up to the present. we hate aSst111101
that. k, in equation l, is an integer. If the time of the investment is
not a whole ttilitilwr of conversion periods, it is customary hi
practice to define the compound amount to la. the result obtained as
follows:

( 1) Find th«.ompound amount at the end of the lust whole
conversion pr rind contained in the giien time.

(2) Accumulate the (sulting amount for the remainder of the
time at simply.' interest at tier' gir( // nominal rate.

EXAMPLE 1. Faill Thi :lamina at tilt` of 2 years and 7 months, if
81,0(.X) inxIsted at 8`;

Su/Wiwt. 1:t -1 int orost (.1:tt 11e. tern' of the investment. is at the
end of 21..2 pous, Tli, la the ent1 of 21:s years is. by equation 1,

$LOW t 1 .02)' 1,(X)011 .2190 $1.219.00.
'rho To111:1 Min.: tin. 1 month. Iienee, neiannlitt... Ile. new principal,
$1,219, fur I it ,..1111110 111 1. 0 I. We 11,4 i'rt
Nvoli P *1.219, awl 1 1'!3:

I 1219 08)1.-11!) $8.13.

hv ntilmint at t nci of 2 y,--trs -Ind 7 months is ($1,219 -1- $8.13), or
S1,227.13.

In lilacs of the definitiioi of ti.c eninpound amount for a frac-
tional period cci,it it \y have just used. it is customary to agree,
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theoretival work. that. cren whrn 1 is not an integer, the pres-
ent value P and the amount S shall he related by equation 1.

For contrast. the definition used in Example 4 may be called tlie
pratica/ definition of the amount for a fractional period. and the
second definition may be called the themTtirai definition. The
zonount given by the practical definition (litters only s'ightly, in
the usual problem. from the amount. given by the theoretical defi-
nition.

Unknown Rates and Times are conveniently found by simple
interpolation in compound interest tables. The process of inter-
polation referred to is the same iLs that employed in the use of
tables of logarithms or tables of the trigonometric functions,

xAm Pix 5. If interest is compounded semiannually, find the nominal
nor at which $1.000 accumulates to 81.200 in 51:2 yoars.

1, r the unknown rate per conversion period. We have
I' $1,000, S $1,200. 1 I: 1am. 11. :rum equation 1,

1,200 = 1,000(1 4- r)",
(1 + r)".---r 1200.

In the row of Table I fur k 11, we find (1.015)" 1.1779, which is less
than 1,200, and 11.021" .-.1.2431, which is moo- than 1.200. Heuer, r is be-

.015 and .02. In finding r by interpolation, we MI--(1 +that tho same proportion of the way from ----;
015 io .02 us 1.200 is of the way from 1.1779 to 12434. 1 .. '015 1.1779_

1.2134 1.1779 .0655; r - ? 1.2000

1.1779 -- .0221. 1 .02 1 1.2434

.02'21
I

tleure,r is f the way from .015 to .02. Since (.02 .015) =, .005,.0655

r .015 + 221--( 005) _015 + .0017 .0167.655
The nominal rate is 2r, or .0334, ur alTroximatily 3.3":'E. This final result
is altoo-4 certainly aceurat to tenths of :t per cent. .1 ,:erund approximation
could bo found by inti-rpolation, by use of cou....lrable computation' but.
the present result would satisfy most. petical

xAmpt..; 6. IIow long will it take for $5,250 to avettinulate to $7,375 if
the money is in% eNted at GYE, compounded quirtrly'!

Sobetion. Let I: n 1 ht. Iiici 11111111,1* Of conversion l ''iiutls. From
equation 1,

7,375= 5,250(1.015)k;

(1.015)1' =
;)

= 1.4018.
,2a0

By interpolation in the column of Table I, we find that k 22.83,
periods of $ months. The time requird 11(22.83) years, or 5.71 yours.

Ise/. cuattn. tit 1. p. 3 I, iti liorS Mit/h, /pa: irm of /tic, Nim,
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There is ample justification, on the grounds of accuracy and
simplicity, for using a certain logarithmic method in Example 5.
Ifowever, in the analogous and more important type of problem
relating to annuities, this logarithmic method is not applicable.
For this reason, we adopt the interpolation method as our standard
one for determining unknown rates.

In Example 6, we solved an exponential equation in k by use
of interpolation. It can he proved a that the solution obtained by
interpolation is an exact solution of the problem, subject to the
natural limitations of the tables einplo:k ed, if the practical defini-
tion of the previous section is adopted for the compound amount
for a fractional period. On tin other hand. a solution of the ex-
ponential equation in Example 6 by use of the customary logarith-
mic method gives an inaccurate result, according to practice as
exemplified by the practical definition of Section 5. This is an
interesting point, in view of current impressions in iegard to the
approximate nature of results obtained by use of interpolation
methods.

Equations of Value. To compare two sets of financial obliga-
tions involving sums of money due on various dates, we must first
reduce all sums inyolvez1 to equivalent sums due oil some common
comparison date, An ((illation of cultic is an equation stating that
the sum of the values, on a certain comparison date, of one set
of obligations equals the sum of the values on this date of another
set. Equations of value are powerful tools for solving problems
throughout the mathematics of investment.

Ex xtpu.; W owes 1' (i) $100 due at the end of 10 years, and (b) $200
duo at the end of 5 years with aveurnulated intere:q at the rate :3%, com-
pounded W wi,hes to par in full by making two equal pay-
ments at tilt' ends o: :id and the 61)1 yea,. II nioney 15 nOW COnsitlered
worth ; 'r, compounded Mt niiannually the credo find the size of W's
equal payIllaltS.

Sulution, Lot S.( be thi paynpqa. i %%L.:1w: to replace his old obliga-
tions by two new ones. iquation 1, Patt 111, obligation b requires the
payment of 200(1.0).5," :11 Iii'' -lid of u year.

hid 3b/;riations New Ob/iga t
cu; $100 due at the end of 10 yr. $x due in 3 yr.
(b) $200(1.015)" due at the end of 5 yr. $x due in 0 yr.

,hall uso the end of .5 y-IN as a t.,Inp:in7ni date. In the following
(VW I, ill of till' I' it tut InbI j.` the :11111 Id the equivalent values of

w. I.. 11:1 rt. Ow tit <tit Matitcniatiral 31uth!y, Cvl. XXXVI (192U), p. :17U.
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the old obligations at the end of 5 years, and the right member is the sum
of the equivalent values of the new obligations at the end of 5 years. In
writing the left tuttbr, v: dim.,,ant (a) for 5 years, and take (b) unchanged,
beeaust. (h) is din at flit- ntl of 5 years. In writing the right member, we
(111Umulate the ilia Sr for 2 years, itnd di8emint the second $x for 1 year.
In diseounting. or ztecinindating, we use equation 2, or equation 1, as the
ease net.. ho.

100( 1.02) to 4. 200(1.015)10=z(1.02)4 x(1.02)4.
100(.A203) -1- 200(1.1605) = x(1.0821)

31.1.13= x(1.0821

1 4 .

+ /4.9612).
+ .9612) =

$153.72.

2.0136x.

x-23 .0 ;111

PAliT I V. A N N CERTAIN

Annuities. An annuity is a sequence of equal periodic pay-
ments. An annuity ccrtain is one whose payments extend over a
fixed period of time; :t contingent annuity is one whose payments
extend over a period of time the length of which depends on events
whose dates of oreurrenee cannot he accurately foretold.

Thus, a sequene of (-mud payments made in purchasing a
house on the installment plan forms ail annuity certain. The
premiums on a life insuranre policy form a contingent annuity
hermise the premiums cease at the death of the insured person.

NVe shall deal only with annuit jog v(rt :tin, and. in this discus-
sion. the qualifying. word certain will he omitted. The sum of the
payments of an annuity which are made in one year is called the
minim' rent. The time between stieNssive payment:. is called the
pawn eat intrria1. The time het weer) the herrinninfr of the first
payment interval and the end of the last one is called the term.
of the annuity. Unless otherwise stated. the payments of an
annuity are due :it the ends of the payment intervals; the first
payment is due at the end of the first interval, and the last. pay-
ment is due nt the end of the term Of the annuity.

Thus. in the case of an annuity of $150 per month for 15
years. the payment interval is ni.e month, the annual rent is
$18(10. and the term is 15 years.

Present Value and Amount of an Annuity. Under a specified
rate of interest. the prsent ratite of an annuity is the sun) of the
present values of ;ill the payments of the annuity. The amount
of an annuity is the sum of the compound amounts whielt would
be on hand at the Pn,1 of the term of the annuity if all payments
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should accumulate until then from the dates on which they are
due.

Illustration. Consider an annuity of $100, payable annually
for 5 years. Suppose that interest is at the rate 4q, compounded
annually. We obtain the present value A of this annuity by add-
ing the 2d column of the following table, and the amount S by
adding the 3d colunni. The values of the various powers of (LW)
were taken from a table not included with this chapter.

PA N or Sinn
DE K A I. END ur l'ItENI:NT VALUE or PAYMENT

1 year
2 years
3 years
4 years
5 years

CoMPorNI) AMOUNT' AT ENO OP' I

TERM 11, PAY NIENT Is LEPT r
AIELATE AT INTEItFHT

100(1.04)' 96.15.4 100(1.01)4=-- 116.986
100(1.04)-1 = 92.156 100(1.04)2 = 112.486
100(1.04) ' = 88.900 100(1.04)' = 108.160
100(1.04)' 85.480 100(1.04) == 104.000
100(1.04)-'=: 82.193 100 T..: 100.000

(add) A $445.183 (add) S ,-, $541.632

Annuity Formulas. In applications, the payment interval o
the annuity involved is usually found to be the same as the con-
version period of the interest rate. This is the only case which we
shall treat')

Consider an annuity which pays $1 at the end of each interest
period for n interest periods. Let (air, at i) represent the present
value, and (sq at i) represent the amount of this annuity when the
interest rate per conversion period is i.

To determine a formula for The first $1 payment is due at
the end of one interest period. and has the present value (1 +
The present value of the second payment is (1 + i) etc., the
present value of the next to the last payment, due at the end of

periods, is (1 + The present value of the last
payment is (1 + The present value of the annuity is the sum
of these present values, or

arc.= (1 + (.1 -T- h ++ (1+i) I. i) + (1i)-1. (I)
On the right s;de of equation 1. we meet a geometfic progression,
with the common ratio equal to It 1). The formula for the sum
of a geometric progression is crl c r where r is the
ratio, 1 is the last term, and a is the first term. In equation 1, we

01.'nr a grh-rni tr.atmnt of all ,a-,os whioh ariSP to th.' arplivations of an-
nuitiPs. sec, author's Mathematic:: of Inrcatment. chapter IV.
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EXAMPLE 2. If you deposit $50 at the end of each 6 months in a bank
which credits interest semiannually at the rate 4c'e, how much will be to your
credit at the end o' the 20th year?

So/ution. The amount to your credit tho amount S of the annuity
formed by the de-msits. We use equation 5 with R = S50, n -=. 0, and
i

S = 50(.47 it .02) -.= 50(60.4020) $3,020.10;
in the solution, we used Table III.

ExNtrhe. 3. I purchase a house worth $12.000 cash. I pay 52,000 cash.
I also agree to make equal payments at the end of each 3 months for 9 years
to discharge tha balance, pvinc;pal and interest included. If interest is at
the rate 6c1-, compounded quarterly, what must I pay at the end of each 3
months?

No/ut:mt. After paying 52.0(X) cash, the balance is 510,0(X). This $10,000
is the present value of the annuity whieh I shall pay, quarterly, in discharging
toy debt. Let 1/ be the unknown quarterly payment. Then, :ye use equation
4 with :1 $10,000. R unknown. a 36, and i .ot5:

lopoo=-- Rtair at .01.5).
10.000 10 000R

a Al,;]
---= =--- $361.5:: (Table IV)(.,- to 27.6607

Amortization of a Debt. A (1(.1)t, N% hose present value is is
:aid to be amorti:ol under a given rate of interest. it all liabilities
as to principal anti interest :ire dischare...ed by a sequence of periodic
payments. \\ hen t1.- payments are egital, as is the case,
they form an annuity w}:sn present value must equal ..1, the orig-
inal liability. In the precettit. Example 3, we tietorntined the
quarterly payment vhieli Wt111 a debt of $10.099 with
interest at 6'; , rompountled ( tt 1'7zr!2, in 9 years.

EX MPI.E farm is worth 5.25,(XX) cash. A buer will pa: 512.000 cash,
and he will amortize the balance by payments of $1,000 at the end of each
3 months for 3 years and 9 months. At what interest rate, payable (luarterly,
ts the trAnsation being tewetited?

s,,/:i(ion. '1 h.. balance due. after the cash payment, is 513,000. Let t be
the iinknown trorsst ran., per vonversion pprimi tut 3 months). Then,
5E1 00) must equal the present Va hit', at the rate i, of an annuity of $1.000
p.Ivabl quarterly fur 3 ysirs and 9 months. We use fornotla 4, with a 15,

$1000, .4 $13.(Xx), anti i unknown:
13.000 1,000u1,-; :It i): i) 13.

\V,' solve tl:e last etvatibn by interpolation in Table IV. We see
from the table that at -: 13.343, and ta::. at 2`; I .7:
1 2.S19. Hence, I is between 11 ; anti 2' liy a solution like that
of Example 5 of Part III, we finct that L: .0185: since this is the
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ohliaations, he %ill pay $500 at the end of each 3 months as long as necessary,
and will pay whatever final installment is necessary to close the trans-
action 3 months after the last $500 payment which is required. Find (a)
how many $500 payments will be required; (1.0 the final smaller payment.

Noiatin. (a) If it payments of S500 each ,re exactly sufficient to dis-
charize the debt, then the present value of an annuity of $500 paid quarterly
for n periods would equal $10,(X)0: that is, by equation with i.=.02,

10 000 = a' .02).
(a, -I at IV) (ti)

Front Table IV. we see that I at .02) 19.5, which is less
than 20. lIenee. 25 payments of $i500 each would not be sallieirnt
to discharge the debt. Also, from Table IV, (a:,.7, at .02) 20.12;
hence, since this is flaw, than 20, it follows that 26 payments of
$.500 each would be MM.(' than is required to discharge the debt.
These facts show that the debtor should pay 25 installments of
$:100 eaell, anti some amount W, Icsx than $500, to close the trans-
action at the end of the 26th period. The last $500 is due at the
end of 25 periods. or 61.,'t years.

(h) To determine the unknown final payment, W, we proceed as follows.
First. we solve equation 6 for a by interpolation in Table IV. We find that

4.763n = 2.5 + = 23.7975-a,mo
Then, Theorem I. which follows, states that the final payment is 500(./975),
or $398.75.

The solution of the last example serves to illustrate the fol-
ImvinEr, theorem.

TittIttta:m I. When a ciPbt. A diseharzed, principal anti interest included,
by payments of R at the end of each interest period for as Ione its necessary,with in smaller payment one period after the last installment R,
then the [lat., :1111 size of the final sioall payment can be found as follows:

1. Sol', R(an." at i) fair n 1771 ;at( rpo/ation t» Table IV.
2 If the fil)tined it n k f, usher, k is a paiitire integer and

pa11;,-,- thaa 1. Ihrn the finql pomrnt fiqe at the rndor ( k 4- it >iife-...4 1a rio,IA and

final porn, at f (7)

The essential part of the statement of Theorem I is ill equation
7. whose proof is beyond the scope of the present chapter."
rquation 7 w:Is used in the solution of part it of Evample 6. In

"Fnr a r.1.1% W. I.. Hart. Amer...7h iffottly, Vol. XXXI," I.1:#291, p. 373.
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Bonds. A bond is a written contract to pay a definite redemp-
tion price $1` on a specified redemption date, and to pay equal
di? idend$ SD periodically until after the redemption date. The
principal SF mentioned in the face of the bond is called the face
value, or the par value. A bond is said to be redeemed at par ifC = F tas is usually the ease, and at a premium if C is greater
than F. Ti e interest rate named in a bond is called the dividend
rate, or the bond rate. The dividend D is described in a bond by
saying that it is the interest, semiannual or otherwise, on the par
value 1: at the dividend rate. The following paragraph illustrates
the essential paragraph in a bond:

The Kan,as Improvonwnt Corporation acknowledges itself to owe and,
for value reveivNi. promi:es to pay the bearer Five Hundred Dollars onJanuary 1. 1936. with intre-t on the said sum from and after January 1, 1925,
at the rate Cr 7c per annum, payable semiannually, until the said principal
sum is paid. Furthermore. an additional 101:*;- of the said principal shall he
paid to.the bearer on the date of redemption.

For the bond of the preceding paragraph, F = $500, r = $550,
and the semiannual dividend D = $15, which is semiannual interest
at on $500. A bond is named after its face F and dividend
rate. so that the preeedina; paragraph is an extract from a $500.
Gr'c bond. orrespnmling to each dividend. tlu would usually be
attached to t:.0 bond an individual written contract to pay SD on
the proper date.

When an investor purchases a bond. tie interest rate vhich his
investment yields is computed nuder the assumption that he will
hold the bond until it is redeemed.

WI:en a bond is sold on a dividend date, the seller takes the
dividend which is due. The purchasi'r receives the future divi-
dends. which form an annuity whose first Dayment is doe at the
end of one dividend interval, and vhose la-u payment is Inc on
the redon,ption date. It' an investor desires a specified yield on
purchasing tl:e bond, the price $P which he should be to
pay is by the following (quation. where prezwnt values are
computed at the inveAinent rate which t!:e I'llyer has specified:

Iprc,ent abi of th,- ltion 'tate)
Ht r,11,11. tbe annuity formd by tbe diridend.I. (8)

Ex Amptx A. A $10(1. el' bond. \volt piyable semiannually, will
redee'me'd at ir at the end of 15 years. Find the price of the bond at
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which a purchaser will obtain a return of %, compounded semiannually, on
his investment.

soto;oa. The send Imolai dividend is !i3. The it MrtiOn is $100,
due at tie. end of 15 years. The term of ihe divider I annuity is 15 years,
or 30 interest periods. By use of ectuation S,

1' 100(1.02) 3(ii.;.lat .02) $122.40. (9)

Iu tlitiatiull 9, We usvd 'nail', 11 ;did also Table 1V.

Determination of Bond Yields. A purchaser of a bond can -
nut, (IS a rule, d' 'tae the !wive which his will pay, er the interest
rate whielt the bond 511 :111 yield, although, of course, he may with-
hold his purchase until the ondition,: satisfy him. Essentially, a
purchaser of a bond must pay It !ie jS specified by the law
of supply and demand. :t' exemplified in the prices on the bond
market. Hence, We are led to the problem of determining the in-
vestment yield is given by the pureke,!. of a bond at it 1.2..iven

price. This problem is the coot 'erse of that treated in the preceding
example, where a yield as given ;oat we determined the price.
.1 :solution of this converse problem is too lengthy for the present
discussion, although the solution presents no serious diflirtilty. If
all annuity table, like l'able IV, is available, the problem can be

by interpolation, alter it suitable arrangement of prelim-
inary details. "che solution is particularly easy if a bond table
is available giving the prices of Inanis at various yields and for
varuts times to the rellelliptit)11 Batt'.

An approximate solution of th problem of detertninin!, a bond
yield can be obtained by the method ui the next two examples.
Example 9 illtistratts,.: tilt' of a bond bought at it discount,
that is, bought- fur less than the redemption payment. Example 10
illustrates the case of a bond bought at a premium, that is. bought
for more titan the redemption payment. It is interesting to note
that the Met 110(1 ": of IlieSe eX:11111) les 111VOIVe74 mere arithmetic.

f:x \mils. ¶1. A $1,0u(). 111,11,1 pays lividripis ;num:illy and is redveni-
101111: at par at tin. cod of 10 y, If tke hood ho11:2.1it fur :;1550, determine
an al piovinat ion to the yield winch the in\ ,..tor obtains.

do aknil it ;4)0. iit in% t -1,1- pays for die bond.
and recii\ at the end of It) -ear,, beside: the nds. The:

(Ledo $1.;41. ieresents die leelinailated .iiii. :it the end
(1! It) y.-trs, ''I I all t Iii % thAt %%11;e1t the

po% 1)tirtm; tin' 10 yt.:11,.. flip itiNTstur Atii11,1 think of tile value of
rt jostiliont ion of to, liwthod. wthn of

in, lit. 1'.
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1)1,2 bond as inere.isait: from $ti:51.1 so $1,000. 11 the $150 inerease yore spread" r lit.- 1() vtir-t, filo inert r ir 11,1(150), or
$15. This $15, r lii it' animal of' 1410, iii $7.1 in all, isappro\itnatt 1 .00to ti oc. 1.1 "I 11-1111 ti lruitn I ho , 1.1, "iinge\Ay iii thi. 120,...,0-Flom,

1)1tip' luau hu'i-u-.tu 10,, ::,,A(1 lii 711.0011. 111. ittIt-rt-t-t rat,' obt 611111 by the
intestiit is ai proxstn.ilidy nit,- at w,litolt $1'5 is thi( mteryst for eine yvar

. 75011 $1125; tin. ran( I-
925.

or Thai i-, thu bona Yl(.41,4 approximately
pot* yoar.

It ran In' ....lit) \VII 1 Lai I he method (II i'-1'-: example, fur-
nishes :t \vilis.ls is err(ir not titan .2'; . etS
a very extrenic !halt, in the eustoniary type of problem.

xtNspi.t-; 10. If ilii 1)((n1l of Ex:Law'', 9 hula:lit for S1.200, find anapproximation to the i'(1,1 °lit:lined by till, inv.tor.
,"i'llie)te Earle diva!, nu! k $400. '111( pay- $1.2(XT, reeiivisidy t(s1.t()0 at 'ow ,.11,1 (if 11) diviiictids. IT 14 nut earn el

to say that the iliffi.ri(nee 0.2u0 1,00(P. rfprt.s(-111:, pritt-(11,31. w,. liuuttltt s.t tit tt this $2(X) ri pri tits a r..t wit of prifleipaltlr.t.lt 11 1-: tltro:tult titt tit% It1 payttit Th. rofor,. t-tt.lt divitIontl
only partly of ; part ui t-ttli uIi tibtuul 1.?. .t rtturti prineipiel.If tilt $....100 siisirti of ;Thr. -:jit inilforto1v14 over dn.( 1t.) yrat'-. therilurn \'-:u1 1),- ((r $20. Ii' nee. in of :160,tip Is a rt.t11111 ui abolit $20 (4 prineipal; iii.' $.10, IS inti-rest.

The v.111:, (,f from $1.20) to $1.000 di, 10 years;
the averatto \ able is 1211.20e) -I-- l,()0), 'it' $1,104), Tip' inti-rost rate whieh the
invistor ithtams is approxiterit, lv iii r:itt. at which $10 is interest

.10fin. one yoar on $1.114); 11114 nit, i .04. The Inv( stir obtains1,100'
apprt)ximateli 3.0".'i ht' invpstnictit.

r V. it
(lisetIssiim of Part, II, III, anti IV wa, aroinitt an

cxtrrniely slim!! mahl.t.i. of Holation,:. !or
Ilacc for tvo for coll.polind a:1.1 1%.;) for
atuwitirs. Iii racli ronsinireil, t1.1( sii:10 ion started, iiireet
front one (if these fundamental eq;Piti((ti. i- called tit
die relative situp:ieity t. stn.lt :t flied:1)1i. ill viintrit4t to one %vliere
\ve \vennit entp:oy the auxiliary 5i.1 lit solv-
intl., in tut'll, ill cavil equation. for cacti syinhen :11 terms i)f the
ialter:4 present. inct1.0,1. :ipplitci to violation

.\ 11;:(;1:. ((- t1- 1,-t -1.r--1-1 .!t-'.:. tr rho E.:0 --I' I.. 1tni1." t-. .ti ;)3i tr I u. ma,.
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r)k, would demand that we solve the equation for r, and
for k, as a ill.rliminary to our cli,(.11:-.-ion of comp)tviil interest: the

%vould

log S log P I,S= r 1
log (1 + 7.) '

'file addition of equations 1 to the two simple formulas which we
inivo used in diseussingu compound interest Nould give a rather
romplicate11 mathematical bakground to an otherwise simple sub-
jet. In nuts II. III. and IV, the restriction of our formulas
to the few simple equations whirls WC employed gives :t mathe-
Inatical hark.ground which is easy to remember and convenient to

The methods employed in this eliapter were absolutely depend-
ent on the use of previously prepared tables of the values of the
fundamental expressions involved. Failure to u,(. such tables to
the fullest extent NVollid reStlit ill ;111

Contarts with actual practice in th.)se fields where the sub:wet
finds Ilse.

The author lwlieves that a large amount of the subject matter
of this chapter Il1erit!4 (.011Sideatit)11 OS a part of any advatired
course in arithmetic given ill the senior high school,
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TABLE I
(.1 i) k

k J

1

2
3
4
5
6
7
8
9

10

11

12
13

14

15
16

17

18
19

20
21
22
23

24
23
26

27
28
29

30

-31--
32
33

34
:35

:36

:37

38
:39

40

11:3(7f 2%

1.0150 1.0200
1.0302 1.0404
1.0457 1.0612
1.0614 1.0824
1.0773 1.1041
1.09:34 1.1262
1.1098 1.1487
1.1203 1.1717
1.1131 1.1951

1.1667F-- 1.2190
1.1779 1.2434
1.1956 1.2682
1.21:16 1.2936
12315 1.31v3
1.2302 1.3459
1.2(390 1.3728
1.2880 1.4002
1.3073 1.4282
1.3270 1.456S
1.3469 1.4859.
1.367 L- 1.5137
1.3876 1.5460
1.4081 1.5769
1:1295 1.6084
1.4509 1.6106
1.4727 1.6734
1494S 1.7069
1.5172 1.7410
1.5400 1.775S

1.56'31 1.8114
--1.;WT 1.8176

1.6103 1.881.1
1.6315 1 .9222

1.6590 1.9607
1.65:39 1.9999
1.7091 2.0399
1.7:318 2.08)7
1.7608 2.122:3
1.7872 2.1617
1 .S 140 2.2080

TABLE II
ll i)-k

1 .985 22
2 .97066
3 .956 32

4
5
6
7
8
9

.942 18
.928 26
.914 54

.901 03

.6771

.S7159
-10- -.W6167

12
13

14
15
16

17
18
19

.836 39

.824 03

.811 S3

.799 S3

.788 U3

.776 39
.764 91
.753 61

20 .7i2 17
21 .73150
22 .72069
23 .710 04

21 .690 51
25 .69 21
26 .679 02

JIGS 99
2S .659 10
29 .619 36

30
31 .6.,0 31
32 .t3:20 t);)

33 .611 82
34 .002 77
35 .59:3 S7
36 I :65 l)
37
3,S

39

40

2%

.980 39

.961 17

.942 32

.923 85

.905 73

.S87 97

.E 70 56
.Ci3 49
.836 76

£20 35-
. . -

.S01 26

.788 49
.773 03

.757 SS

.743 01

.72S 45

.714 16

.700 16

.686 43

.672 97

.659 78
.616 84
.634 16

.621 72

.609 53

.597 5S

.58.5 S0

.37.1 37

.36311
.6.39 , .a52 07

.541 2a

.5:30 63
.520 2:3

.510 03

.500 03

.490 22
.576 11 .480 61
.567 9.2 .471 19
.559 5:3 .461 93

-.551 .452 89
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TABLE III TABLE IV
s;71. awl

It 2','.

1 1 tom 1.0000
2 2.015(1 2.0200
;; 11.0452 3.0604

4.0999 4.1216
5 I 5.152;3 5.2040
6 6.2296 6.3081

7 7.3230 7.4343
- 132.-3 8.5830
9.559.3 9.7546

10 10.7927 10.9-197

11 11 86.33 1 12.1687
12 I 13.0112 13.1121
1:; 1 1.2368 14.6803

11
i

15.1501 15.9739
15 16.6.21 17.2984
16 17.9321 18.0393

17 19.201 1 20.0121
18 21.4123
19 . 21.7967 2*, 106

0 24.2974

21 21.170) 20.7~33
25 8376 27.2990

0 27.2251 25.8450

21 28.6;3:35 30.4219
05 30.06:10 32.0303
26 31.5110 :33.6709

o067 35.3113
2" 3 1.1815 37.0.512

:35.9987 58.7922

.30 .37 40.5681

it 39.101 42.3794
0. I 4(1 ; 1.2270

42.296 6.1116
:;1 4:1 93 31 45.0:338

15.1!+'21 19.9915
:36 17.2700 ;31.9941

9..51 5 1_03 13
50.7H,11 56 1119

:39 52 107 58 2372

40 5 1 :26711 60.4020-

;

1

2 1

3

4
5 I

6
7
8
9__

10 ._
11

i

12
13

14
15
16

17
is
19

20
21
22
23

24
25
26

27
28

31

32
:13

34
:35

36

37
38
39

40

11::( 2c/c

.9852 .9804
1,9559 1.9416
2.9122 2.8839

3.6541 3.8077
4.7826 4.7135
5.6972 5.6014

6.5982 6.4720
7.4s39 7.3255
8.3605 S.1622__._____ _____. .___
92222 8.9826

10.0711 9.7868
10.0075 10,5753
11.7315 11.3484

12.5434 12.1062
13.31:32 12.8193
14.1313 13.5777
11.9076 14.2919
15.6726 14.9920
16.4262 15.6785

-17.16513 16.3514-*
17.9001 17.0112
18.6 208 17.6580
19.3300 18.2922

20.0304
20.7196
21.:3986

22.01376
22.7267
23.3761

21.6 161
25 2671
25.8790

26.1817
27 0756
27.6007

2.: 2371
2s S1)51

18.9139
19.5'235
20.1210

20.706 9
21.2813
21.5144

22.3965

22.0377
23.4683
23.11886

24.4986
24.9086
2:3.88.8
25.9695
20.1106

29 36 (6 20.1126

29 9158. 27.13555



MATIIEMATICS IN AGRICULTURE *

By HARRY BUR ;ESS
fnipt rxit I/ of Minnesota, Dupartment of Ayrieutture,

St. Paul, Minnesota

IN

Value of Mathematics in Agriculture. There are still many
people who question the value or the need of any appreoiable
amount of math( au,tiettl training in the field of modern agriculture.
On this account. at the outset, it will be well to consider the present
strueture and relationship.) of the agricultural industry.

The Business of Farming. The modern farmer, if he is to be
successful, must be a business man 'n the fullest sense. Ile must
have in his mental equipment a I argi. and broader knowledge of
scientific, economic, and financial principles than that required in
almost any other hue of business in the world to-day in order that
he may plan, direct. and carry out the operation of his farm intel-
ligently and with profit. Ile must be able to plan the size and
arrangement of buildings on the farmstead, to subdivide his farm
into fields of the proper shape. size. and arrangement for economi-
cal and balanced operation, to plan suitable rotations, to inaugurate
anti carry out systems of fertilization and pest control, to build
a farm calendar. anti to schedule the amount and distribution of all
man and horse labor. and mechanical power. He must know some-
thing of the relative efficiency of inethods and equipment as well
as. of the principles of depreciation and replaccInclit of both
machinery and livestock, lie inu4 balance his crop production
to meet the needs of his livestock. and he must plan his feeding
rations and seb.rt atn f breed new stfains in both crops and livestock
to insure best resirts in production. Ile must be able to estimate
the amount of paii.1 required for a buildin. or the best shape or
size for a given geld to be fenced with a known amount of fencing.
lie must know tit- capacities of men aaIltl 111:101.111Vry , of bins and

%1 [qu!' tor the Yral 1),0,4 Pit Nqt,,,n,t1 counell of T <'acArr, of Math-
matirx and IIPPr"vod h) Or Dean and Nrrlr as M bwellaneou5 Paper No. 2:26of the 1 !IR ersit y of Minnesota. Depart ttont Agriulture, Attgtist,

bb
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least potentially ami fundamentally, essential to training in agri-
culture and agricultural science.

Especially closely associated with the field of agricultural
science arc the various milling industries producing flour, food-
stuffs, and clotliing inaterials. as well as paper, lumber, and other
building and structural materials. This combination creates an ever
increasing deniami for Ultimate knowledge of modern forest de-
velopment, conservation, and management, of salesmanship, of
mechanical knowledge and training, and most important of all, of

including such matters as investments, insurance, bank-
ing. property valuation, luaus, and amortization. The range of
nuttheinatic..1 knowledge required to handle this varied demand is
readily seen to be all the way from the four fundamentals of
common arithmetic up through the various ramifications of the
compound interest principle, mensuration, logarithms, statistics,
calculus, and the mechanics of materials.

The Rural Home Problem, Inseparable from the conduct of
the farm business s the factor of the rural home which involves
problems of housing anti feeding adjustment as between the op-
erator's: family and the hired help, the simplification of labor
through modern methods anti devices, sanitation. the economies of
food and clothing, and child training and NN cl fare. Here the re-
quirements in inatheinatical knowledge and raining seem not to
be so broad and varied, but they are none the less definite in the
fields of proportion. mensuration. anti minor financing.

Agricultural Science and Organized Research. This field
comprise:::

A!;riculturul Biochunistry. which to-tiny is at the very founda-
tion of human food !old clothing supply in the pocesli:mg of
daily products, flour, and other grain foods, dye stuffs, and cloth-
in:, materials: aunt also 1)11.11(1111LT, 1:1Ztt IS tit`VC!OpCi 1 11'0111 farm
grox%11 crops. and the

.01/ , on xvhich is based the conservation and develop-
ment tai soil fertility, :nal the conservation :old control of soil
moisture.

Ti:. B:clouical which involve the development of de-
sirable types and str:tins iii plant anti animal life, such, for
example. as are resistant to diseases and climat ic rigorsand
the control of both plant and animal pests.
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sought; while the selection of the type of tractor best suited to do
the work on a given type of farm under given local conditions re-
quires a knowledge of structural materials, depreciation, soil dyna-
mics, and labor and power distribution, which is unique in the
field of engineering,

It is here interesting and significant to renumber that Dr. I:, A.
White,' the first acknowledged agricultural engineer to receive a
Doctor's degree in that field, developed some fifteen years ago as
his Doctor's thesis "A Study of the Plow Bottom and Its Action
upon the Furrow Slice," a scholarly treatise of 34 pages, 24 of
which are pure mathematics of a high and difficult order, This
study has lend a profound influence on modern plow design and
usage, It is the recognized forerunner of extensive studies, now
being enrried on at sonic of our agricultural experiment stations, on
soil dynamics in relation to tillage as a guide to the efficient design
of farm power units and tillage machines required in modern
agriculture.

The intricacies of design called for in modern scientific plan-
ning of farm drainage and irrigation systems and of soil erosion
control works, involving not only an intimate knowledge of the
basic laws of water flow in closed conduits and open ditches but
also of moisture relations of crops, of soil texture and soil water
movementsoil hydraulics. if you please call for a grasp of
advanced phases of mathematics and mathematical physics in new
and difficult paths that is even now taxing to the utmost the abili-
ties of our leaders in mathematical and physical thought.

EDUCATION IN MATIIENIATICA FOR AORICULTIIRE

This brief survey of the field of agriculture in its various rami-
fications brings us at once to grips with the question of what
fundamental mathematics in secondary school education is nettled
to prepare for work in this tieltl. In this connection reference may
quite properly Lie made to a former paper on this subject, rend be-
fore the Mathematical Section of the Minnesota Educational Asso-
ciation in 1021.3 The situation is not radically dif,..erent from what
it was at that time except that perhaps the demand for higher

t 14rpvtor of top National VonnultteP on Thp Relation of Meetrleity to Agri-culture.
I hi"rPisi aJ Agrirnii low/ ran 1,, No. . 1'0l. XII, pp. 111.182.
" M1oltoom MathputatIval ItoquIroment for Agrlvolforal Study."

o,utlen Trauhr. , Vol. XV, No, 1, January 1821.
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mathematics in education for agriculture and related activities has
grown much stronger.

Historical Retrospect. During the first decade of the present
century this demand was nt n very low ebb, the chief value of
mathematical training for students in the agricultural field being
considered by ninny leaders in that field as a necessary evil whose
chief value was cultural and disciplinary. This attitude, however,
resulted in such a decline in the general quality of scholarship in
agriculture that by the middle of the second decade of the century
a decided protest against neglect of mathematical requirement
began to make itself felt and its inure vigorous proponents started a
definite study of, and a propa gamin for its more utilitarian aspects.
By 1918 this activity began to take definite form in the claim that
what was really needed was a general inatlkmaties especially
adapted to the elementary requirements of agriculture. All non-
essentials were to be swept away and only those topics were to be
retained which could be shown to have a direct bearing upon sonic
phase of agricultural work, supported, of course, by the recognised
primary fmulamentals.

Within three or four years several new texts appeared purport-
ing to meet the requirements just stated. The general plan seemed
to he clothed with official sanction when the Resident Teaching
Section of the Association of Land Grant Colleges and Universities,
in its annual convention of 1920, voted approval of a syllabus for
a suitable text for such courses, which was presented to the session,
in galley proof form, by Professor Samuel E. Rasor of the Depart-
ment of Mathematics of Ohio State University.

A Specialized Mathematics for Agriculture. There seems
to have been quite general agreement as to the requisite details
of such a course, these being in general about as follows:

A review of the imzie essentials of elementary algebra as given
in standard secondary schools through quadratic equations.
The elementary principles and practice of common logarithms.
Elementary series. including especially the progressions and the
binomial formula.
Depreciation and elementary accounting.
The compound interest principle and annuities, perhaps better
thought of as the mathematics of investment.
Ratio, proportion and variation, dairy arithmetic, and mixtures.
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The principles and practice of numerical trigonometry, espe-
cially as applied to general mensuration and plane surveying.
Permutations and combinations,

Elementary statistics, frequency distribution, and the elemen-
tary theory of errors,

Consideration has also been given to various combinations of
certain of these details, under headings of certain fields in agri-
culture, such as, for example, the mathetnaties of farm manage-
ment. The inclusion of this type of material has received eon-
sidernble support from the specialists in the farm management field.

There has been a tendency on the part of some of the earlier
text writers to include topics that belong specifically to other fields,
such as drawing, physics, and surveying. This practice is not well
advised, as each of these is a field by itself that holds and requires
fully as prominent and important a place in our school and college
curricula as does mathematics, While these fields are among the
richest sources of real problems in matheiaties, the inclusion in a
mathematics text of chapters on pure physics, drawing, or survey-
ing is to lie deprecated, as no one of these distinct fields of study or
even of their major subdivisions can be adequately covered in at
chapter or two. This seems especially trite when it is remembered
that the time allotted to mathematics in school practice is fre-
quently too limited for thoroughgoing results even in that field
alone.

Difficulties Encountered, The idea of a specialized mathe-
matics of agriculture has grown up with such startling suddenness
that, as might he expected, mistakes in the plan of operation have
seriously inteijered with its complete success in practice. Two of
these mistakes stand out with unusual clearness.

1. College administrators, continually harassed by the demands
of numerous new types of courses for admission to the required
curriculum, and often influenced by those who cherish a lifelong
and unreasoning antipathy toward mathematics, have seized upon
the new idea of mathematics in agriculture as an excuse to limit
tl:e time allotted to mathematics in agricultural curricula to a
degree utterly inadequate to the around dint must be covered. In
many cases this has been carried to the extreme of limiting the
time allot. mathematics in the agrieultural college to one
quarter, with three to five hours per week. when those responsible
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for the conduct of the work are painfully aware that three to five
class hours a week for a full year is little enough time in which
to expect the general run of freshman or even sophomore students
to grasp n working knowledge of the mass of topics called for in
such a enlirAC. No doubt the administration justifies its attitude
Ity the plea that the useless lumber of old-fashioned mathematics,
eomprising fully two-thirds of the subject matter material, has
been cut awny, and that I. should be possible to cut the allotted
time correspondingly; a not well digested argument to be sure, but
intrenehed behind a strong rampart of power.

2, Too often the teacher assigned to the course is selected be-
muse of his training in the field of pure mathematics, and from
the general faculty of the department of mathematics. In such
cases the chances are that, although he may be well trained in
mathematics and even though he may be an excellent instructor,
he knows little of the field of agriculture and his vision o. the rela-
tion of mathematics to the agricultural field and its ninny-sided
functions may be represented by the minus sign, Regardless of his
scholarly attainments. his pedagogical talent, or his enthusiasm
for pure mathematics as such, a teacher of this type will find it
very diffieult to elicit the interest and support of the various de-
partments and groups of an agricultural faculty so essential to
success in teaching the mathematics of agriculture, and he is thus
VPI'S apt to be deprived of his most reliable source of real problems
which show the relationship of the pure fundamental science to the

Selection t Teachers. It is a well-established practice in
engineering schools and colleges, based on experience, to select as
teachers of mathematics men who have been trained as engineers,
and are, as far as possible, experienced engineers with a natural
grasp of the relations of put e mathematics to the problems of
engineering. In the light of that experience and with the fuller
vist in of the place of mathematics in agriculture that. is opening
up to the present age, why is it. not the sane and logical procedure
to select our teachers of mathenutties for agriculture more largely
from the ranks of those agriculturists, agricultural scientists, and
agricultural engineers who have a clear understanding both of pure
inathematic's as such and of its relation to the problems of agri-
vulture? This would seem to be a rational practice, not only for
our colleges but a; ) for those secondary schools where preparation
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for advanced study in agriculture and in allied lines is a pro-
nounced feature,

In fact, in view of the time limitations on mathematics in the
junior agricultural college curriculum, it would seem that the ulti-
mate success of any type of instruction or any typo of course in
mathematics of agriculture must rest largely with the teacher of
mathematics in the secondary school,

Sul*.ct Matter Requirements. This thought then brings
even more definitely before us the fundamental question; What
are the secom.ary school requirements in mathematical study that
serve as a suitable preparation for advanced education in the agri-
cultural field? An additional decade of experience in this field
has not greatly changed the answer from the one given ten years
ago.' The extent of mathematical training needed is largely de-
pendent upon the particular student's line of specialisation in the
field of agricultural or related study, but for good results the
secondary school mathematics should, without doubt, be much the
same in all cases. It does not appear that its outer boundaries
should greatly differ from those usually existing, in theory, in our
established grade and high school curricula, However, possibilities
of improvement over the stereotyped old order in interior sub-
division, topic arrangement, content, and methods of presentation
unquestionably exist.

Arithmetic, The young people of the present generation are
likely to he bunglers in their work with common arithmetic. Too
much stress, therefore, cannot be laid on extensive practice in the
earlier grades in the use of the four fundamental operations; and
the numerous short cuts in multiplication and division should be
known and used with facility by every normal young American.
It is wholly unnecessary to find a supposedly normal child of high
school age and standing using the process of long division in divid-
ing by any single digit from 2 to 9, and no teacher should accept
or lightly pass over such a piece of work.

Teachers in other fields of work than mathematics, in which
mathematics is a necessary tool, complain that the students are
incompetent to do work involving the common operations in frac-
tions, decimals, percentage, and simple mensuration. The responsi-
bility for this situation cannot be laid upon the children themselves;
it, rests upon the teacher.

Mathethat lea Teacher, Vol, XV, Nu. I, 4oututrY 19::1.
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Considerable stress is laid by leaders to-day on intuitive or
informal geometry as though it were a new idea in mathematical
training and usage. It is not new except perhaps in name, The
arithmetic texts of forty or fifty years ago included a very con-
siderable chapter on mensuration, There are still living thousands
of our older people who received the fundamentals of their educa-
tion in the one-room, ungraded, country school of an earlier day,
and who found both intellectual profit and keen delight in the
mastery and prarticoi of both planimetric and volumetric mensura-
tion, long before they ever heard of geometry as such. Many of
them who never heard of formal geometry, as now taught in our high
schools, can apply their early training in mensuration to the every -
clay problems of capacity, area, and direction with greater facility
than can the majority of their children and grandchildren who
passed through exposure to arithmetic without any conscious con-
tact with mensuration and who consider the mastery of geometrical
principles to be the epitome of drudgery and dullness instead of the
acquisition of new mental power which it is.

In brief, then, the teacher of arithmetic should insist on a ready
and correct use of the fundamentals in practical applications.
Intuitive or informal geometry is as properly a part of arithmetical
training as is percentage or interest, and beyond that it is a fruitful
source of practical problems to which no student in the agricultural
field should he a stranger.

Algebra. As elementary algebra is only generalized arithmetic
the beginnings of algebraic notation and processes, such as the
term, the exponent., the simple algebraic fraction, the binomial,
and even the simpler special products and the simple equation in
one unknown, should be introduced to the student of arithmetic at
the earliest possible moment. There is no reason whatever why
this practice should not begin at least as early as in the seventh
grade and possibly in the sixth. Then by the time the pupil reaches
formal algebra in the eighth or ninth grade he will be ready for
it and the Jansition from arithmetical methods of thinking in
number will be gradual and natural and carry with it no depressing
mental shock. This is as it should he and is in line with progressive
thought in education. Dr. Reeve's quotation from Dr. Charles W.
Eliot 5 sums up and clinches this whole matter in excellent fashion.

Fourth Yearbook, National Connell of Teachers of Mathematics. D. 141.
Wirt% u of Publications. Tettchera College, Columbia University.
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In regard to requirements in elementary algebra, this point has
been so definitely covered in the former paper already twice re-
ferred to that it needs not to be discussed here, although some
additional comment may be justified. It now seems clear that the
more complicated factorable form a" ± b" should be among those
omitted from high school work in algebra for it finds very few
applications in practical applied mathematics. The time that
would be spent on it by the high school pupil can be spent much
more profitably on other parts of the subject..

One bit of repetition from the earlier discussion seems amply
justified, even though it is in direct opposition to eminent modern
authority. Treating a proportion as ar equation of simple frac-
tions is, of course, perfectly proper, fi.r that is what it is, but it
must also be treated and taught OP ,t proportion, The principles
of proportion are essential, simp'e, and eminently useful. The
proportion, as such, is much more readily applied than is the
algebraic equation of simple fractions. Proportion is the front
door to variation and both are essential in chemistry, in physics,
and in engineering. The `cocker of mathematics will not secure
and retain the whole-hearted cooperation of the scientir+. and the
engineer by refusing to teach the principles of elementary mathe-
matics for which these groups have daily and constant use. The
chemistry of to-day is hard for the average beginner anyway.
Whether the administration is willing to admit it or not, beginning
chemistry is an elimination course in the freshman year in manyof our colleges. The teacher will make it doubly hard for the
average freshman and almost insure his elimination, or, at least, his
strict probation, by refusing to equip him with a comprehentiVe
and thorough knowledge of proportion and variation; and tnis
refusal will not magnify the teacher in the esteem of the student.

Elementary series, particularly the progressions and the bi-
nomial theorem, are the very foundations of much biological science
as related to agriculture. Therefore, if they are not tall:tilt, and
thoroughly, in the secondary tchool they will have to be taught
in the junior college. Is such a plan good pedagogy? Is it not
rather a waste of valuable time for the student to have to secure,
in the junior college, essential mental equipment that he should
already have when he first enters there?

One feels an urge to enlarge on lie place of the graph in algebra,
especially when he :onsiders its multiform uses in agriculture, but,
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as far as the subje.t is related to the teaching of mathematics,
Dr Reeve effectively sums up the essential idea as follows:

The study of the graph is a major trend to-day in algebra because, with
the formula, it helps to clarify the idea of functionality. We now emphasise
the meaning of graphs rather than the making of them. . Owing to the
prominence of the statistical graph, and the increased interest in educational
statistics, graphic work is assured a permanent place in our courses in mathe-
matics.'

It might be added, "particularly in those on the mathematics of
agriculture."

As algebra is basic to all other mathematics it may be advis-
able to emphasize the fact that the high school student should be
so well trained in it that he handles its elementary principles with
understanding and facility. If the customary year allotted to
elementary algebra in high school curricula is not enough to
prohce such a result, an extra half year of advanced elementary
algebra, treating of the more difficult forms and including addi-
tional topics such as the progressions, variations, and logarithms
is desirable and preferable to so-called high school higher algebra
with its abstract proofs mostly beyond the intellectual grasp of the
secondary school sttalent. I' a. the young student facility in appli-
cation conies from I andling often, with familiarity, rather than front
deep reasoning. A igebraic demonstration largely calls for greater
mental maturity than is usually found in the high school student.
The practice of some of the best high schools in offering the sug-
gested extra half year of advanced elementary algebra or general
mathematics based on algebra, in lieu of the half year of so-called
higher algebra, has been productive of good results and is to be
commended.

Geometry. Elementary fundamental requirements in geom-
etry, as in arithmetic, algebra, and possibly trigonometry, are much
the same whether the ultimate field of the student's life work be
that of medicine, law, engineering, theology, or agriculture; for
as one graduate school dean was recently heard to state, advanced
research in applied science can be naturally and safely based only
on work in the fundamental sciences of mathematics, physics, and
chemistry, with particular reference to their application in solving
the given special problem in the given field of applied science.

The fundamental requirements in geometry in secondary school
blurt!' Yrarhaok, Nutionni rounril of Tearhers of Mathrmutira p. WO.
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training have been already so carefully covered by Dr. Reeve,
by the writer, and by others, that extended additional diseuuion
here is unnecessary. It may be well, however, to place the em-
Oasis of repetition on the following basic considerations,

The number of fundamental propositions demonstrated in the
text should be reduced to the minimum absolutely necessary as a
framework for the subject.

Original demonstrations should be encouraged and simplicity
and conciseness the .ein should be insisted on.

No sharp line should be drawn between plane and solid geom-
etry. They can and should be taught in a combined course that
need not exceed one school year in length.

It has never been well demonstrated that trigonometry belongs
in the high school curriculum, particularly in the college prepara-
tory courses. If taught there at all it should be limited to those
simpler phases directly applicable to the solution of practical
problems and its presentation should be made a part of the work
in plane geometry. It is not that elementary numerical trigo-
nometry is too difficult to be grasped by the mind of the high
school student but rather that, as a rule, when taken as a complete
subject in the high school, plane trigonometry is seldom covered
in its entirety. The student having been once exposed to it in
his high school experience generally passes by the college course
in trigonometry with its broader applications and point of view
with the result that he is usually lame throughout his study of
analytic geometry 1.tal the calculus, even though by the time he has
completed thssse subjects he may have attained a mastery that
enables him to handle still more advanced phases of mathematics
with credit.

The value of practice in application of geometry to the solution
of practical problems cannot be overemphasized, both as a stimulus
to the interest of the student and as a valuable lesson in the prac-
tical utility of fundamental science in everyday affairs.

Calculus in High School Courses. Right here it is of interest
to note the discussion by Dr. Peeve of "Calculus in the High
SL liool," together with his inclusion of elementary calculus in the
outline of a prospective course in mathematics for twelfth grade
senior high school) students.' This is perhaps a hold step, but

t uurth Yearbook, Sational Couneil of l'earker4 of Mathematiem, pp. 1114 and173
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within the limits of available time it must be conceded to be allow-
able for the idea and the use of the first derivative, for example,
are not difficult to grasp, and experience has shown that it fre-
quently clarifies ideas commonly included in the elementary mathe-
matics of high school curricula which the students find difficult to
handle or to understand fully without the aid of the derivative.
The subject of maxima and minima is a clear case in point.

The writer cannot agree with the idea that daily work by the
class at the blackboard is a mistake. Pumice of the blackboard
type with a well-organised class, when consistently followed in a
well-planned course in geometry and supplemented by rigid ques-
tioning and criticism by both class and teacher, uncovers and breaks
down the bud habit of memorising prooft, stimulates keenness of
insight, power to visualise, and clarity of logic. The best results
in the teaching of geometry have followed systematic daily board
work, broken occasionally by special presentation of originals or
particularly complicated regular theorems by selected or by volun-
teer members of the class. if any great amount of tune is wasted
in connection with board work it is unquestionably due to lack
of system and class organization for which the teacher alone is
responsible.

VALVE OF l'xrry AND THE UTILITARIAN POINT OF VIEW

In closing this discussion it scents desirable, even at the risk of
some repetition, to outline a certain broad foundation on which
to base the requirements in mathematical study for any field of
applied science. This, of course, includes modern agriculture,
whether considered directly or through the avenues of its many
closely related fields of interest.

Mathematics Inseparable from Human Experience. It. has
akays been difficult to understand the antagonism displayed by
many people to the idea of arc wiring mathematical knowledge and
understanding; for, whether or not one recognizes or acknowledges
the fact, we live in a scientific cosmos in which the fundamental,
governing foi''es all act in accordance with defin;te law. Law is the
idea, whether expressed or only implied, of the method of orderly
progress, and orderly progress is mathematical in its very essence.
Home, no one can escape the continual influence of mathematical
principle in his life (verience, no matter how much he may claim
or seek to do so.
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Unity of the Science the Key to Success. However, mathe-
maticians and other scientists should recognise that, among a lam
mass of people, they have to meet this antagonistic state of mind.
It seems reasonable to assume that the simpler, the more unified,
and the more directly applicable to the problems and interests of
daily life the science of mathematics can be made to appear to the
public mind, the more successful will they be in overcoming this
antagonism,

We must, therefore, think of mathematics, not us arithmetic,
trigonometry, or calculus, not as algebra, frequency distribution,
or theoretical mechanics, but us the science of quantity and its
relationships to thought and tuition with all their material accom-
paniments, In other words, in our general consideration of the
science of mathematics in relation to human life, education, and
progress, we must wipe out the rigid artificial boundaries set up
through centuries of stilted and pedantic scholasticism between
what for want of a better term we are wont to call "the branches
of mathematics," for no such lines of cleavage exist in scientific fact,

Utility Demanded by the Youthful Mind, One of the essen-
tials in mathematical training that applies with especial force to
the broad field of agriculture is the development of its eminently
utilitarian aspects, That is, we must seek continually to develop
the ability of the student to apply mathematical principles to the
phase of human interest.

To accomplish this end in these times of swift progress, wherein
both physical and intellectual inertia arc being inure fully uvertouw
almovt dull) by new and startling developments that have nearly
eliminated time and space in human experience, we must be ready

enter into the of present-day youth. This means that
we must always be On the alert to secure rya/ peoblems from
any and every part of the field of activity. We must present them
to our students not alone for practice in their solutionwhich
must be insisted uponbut even more to arouse their interest and
to show the utilitarian side of mathematics in practically every
phase of human interest.

Old Type Problems Obsolete. The youth of to-day from
kindergarten to college commencement is little interested hi the
infantile, senseless, or purely artificial problems with which our
mathenutties texts from arithmetic to calculus have been wont to
be packed. Rather is he interested in what he sees actually going
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MATHEMATICS IN PHARMACY AND IN
ALLIED PROFESSIONS *

BY BDWABI) SPEASE
School of Pharmacy, Western Reserve University,

Cleveland, Ohio

Introduction. The Yearbook is doubtless the proper place
for a presentation of the usefulness of mathematics in pharmacy,
medicine, dentistry, and nursing, inasmuch as it will be read by
those most interested in the preparation of young men and women
who are to enter these professions.

This chapter will not deal with mathematics needed by the re-
search worker in the professions mentioned, but will confine itself
to the mathematics useful to the study and practices of the pro-
fessions.

The Mathematics Curriculum in the Professional Schools.
It may be of interest in the beginning to state that little or no
mathematics, as such, is taught to the medical student after he
enters the medical college, for it is presumed that he is properly
prepared to carry out all necessary calculations confronting him
in his work. The dental student in some instances is taught some
application of mathematics in his course in materia medica. The
nursing student is taught some mathematics in the course known
as "Drugs and Solutions." Nearly every pharmacy school to-day
offers a course in pharmaceutical mathematics. The teaching of
applied mathematics in these curricula which has come about
during recent years is due, I believe, rather to the growing con-
sciousness of the importance of the subject than i'ierely to the
unpreparedness of the entering students.

It. would be an easy matter to shift the responsibility for the
lack of knowledge of simple arithmetic and algebra to the high
school and grade school teachers; but is it not more reasonable to
assume that the student entering a profession will probably be more

Readers who are interested in finding further problems of tile kind hereinillseussed should consult Ph artnareutfral Atathytnattra by the author of tidoarticle and published by Mairan,11111,---Ttig Boma.
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or less unskilled in the mathematics of his childhood and its appli-
cation in the professions? Should we not rather expect him to
he taught the application when he readies the study of the pro-
fession, and to have not only ability but also alertness enough to
review what he most needs?

Nearly every student entering a medical eollege to-day will
have had at least one year of college mathematics, end many of
them will have had some calculus. This will be true also of the
student of pharmacy before he has completed his college course,
as most of the collek,es of pharmacy give at least one year of
nuithemties in the four-year course. This year will enibrave
college algebra, trigonometry, and analytical geometry. Some
colleges restrict this year to the first two subjects mentioned and
some to the last two.

The four-year course will be the minimum one for Association
Sehools of Pharmacy after 1932. Such mathematics, especially in
university schools or where a connection with a college of liberal
arts is possible, is taught by a teacher of mathematics or is given
in the regularly prescribed courses with students of liberal arts,
sciences, or engineering.

In addition to the above mathematics, all student; of chemistry
must know and use the applied mathematics of chemistry. The
mathematics of the freshman year of chemistry is comparatively
simple, but the student of the sophomore or junior year will take a
course in chemical problems, either as a separate course or inter-
woven into the course in quantitative chemistry. Most of the stu-
dents of medicine and dentistry will have this work before entering
upon purely professional studies, though quantitative chemistry is
not in all instances required of them ; and all students of pharmacy
will have it early in their professional work. The diflieult features
of such a course .ire seldom found in the pure mathematics, but
more often in the application to the field of chemistry.

It appears to-day that the weakness of the students coming to
IL: is in simple arithmetic and in very simple algebra, lint it is also
true that it is easier to teach the applied mathematics of chemistry
and pharmacy to students to-day than it was fifteen years ago.
The reader may draw his own inferences.

To summarize what has gone before and up to this point one
may say that the student of medicine, dentistry, and pharmacy
will have had the mathematics of grade school and high school and
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at least college algebra, trigonometry, and analytical geometry,
and some will have had both differential and integral calculus.
The student of nursing entering upon the combined courses now
offered in some universities will in some instances take college alge-
bra and trigonometry.

Prerequisites in Mathematics. Class A medical schools re-
quire two years of liberal arts work for entrance, and although
mathematics is not required in most schools, it is suggested as be-
ing a useful background course. Some medical schools require three
years of liberal arts work and others four. The four-year course
in pharmacy in nearly all instances embraces the study of at least
one year of college mathematics exclusive of the applied mathe-
matics of pharmacy and chemistry.

Any student who is not properly prepared in mathematics
will experience difficulty in any of these four professions. The
best advice that a high school teacher can give to a boy or girl
planning to enter any one of these professions is to take all the
mathematics his high school offers. I do not say definitely that a
stddent who has not had all the mathematics available in a high
school will fail in one of these professions. I do say that I have
never known one who has had such work to fail and I do know
that the student who is good in mathematics and who has taken
much of it finds his professional work far easier.

Applied Mathematics of Pharmacy and the Allied Profes-
sions. The applied mathematics of the four professions is very
similar, though perhaps the pharmacist finds a range greater than
that of the others; so the subject from this point on will be dis-
cussed from the basis of the elementary mathematics employed and
its application. No attempt will be made to classify it for each or
any one of these professions. The above statement is of course
made without reference to the mathematics necessary for the re-
search worker.

First are taught tables of weight and measure in common use
and how to change denominations from one table into like denomi-
nations in another. A student of any of these professions or a
student of chemistry who cannot understand and make these trans-
positions easily and quickly is handicapped. The metric system
is now accented but the student must be familiar with the avoirdu-
pois, troy, and apothecaries' weights as well. In pharmacy, labora-
tory work accompanies or follows this study and practically all
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calculations found in the mathematics course are carried out in
the laboratory.

The writer has seen the following experiment made with students
of medicine and of dentistry and the interest displayed by them
was positively amazing. Weigh a grain of wheat, using apothe-
caries' weights, and then weigh it upon a fine analytical balance,
using metric weights. The fact that one grain is equivalent to
nearly 65 milligrams has taught some concept. both of the grain and
it.3 origin and of the size of the Milligram. I shall leave it to the
reader to decide where this instruction belongs, whether in grade
school or in college. I believe I can argue upon either side of the
question but all will surely agree that the student of these profes-
sions needs the knowledge. It may be an innocent sport, if one
he interested in this subject, to ask. his physician, his dentist, his
pharmacist, or his nurse as he meets them, What is a grain? What
is a milligram? The writer once had a class of fifty freshmen,
twenty-two of whom had never seen a grain of wheat.

In addition to an understanding of the tables of weights and
measures and the transposition referred to, it becomes necessary for
the student to develop practical knowledge so that answers to given
problems are weighable and measurable with the usual apparatus
at hand. This is a practice that may well start in the early study
of arithmetic. A result involving a weight, volume, or linear meas-
ure should always be stated in such terms or denominations that
it is of practical usefulness.

As an example of an improper answer for a problem I present
one which I once received from a state department. I had asked
for a definite location of a culvert on a canal. The map showed
it to be a short distance from a bridge and also a short distance
from a canal. called a "side cut." leaving the main body of water.
The answer given me was somewhat like this: "446,700 feet from
the north corporation line of " (a town several counties
away). The point I wished to locate was just a trifle more than
a mile from the "side cut."

The review of ratio and proportion is always necessary, as it
is a short cut to the solution of many everyday problems. The
term "ratio" and the mathematical expression of it not only are
found in our daily labors .ry work but will be found in a vast
number of the texts and Arth.'es read by the four professions in
everyday life.
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I am not familiar with the method employed in preparatory
schools to teach this subject, and I sympathize with the teacher
who must teach it; for I find there are some students who can
never really grasp it. simple though it is. Students who come to
us from city schools seem fairly familiar with the fractional method
of expressing a ratio, but have not been taught the real meaning of
a proportion or that it may he stated in whole numbers as well as
in fractional form. Ratio and proportion are used in both chemi-
cal and pharmaceu+ical calculations and are well-nigh indis-
pensable.

The reading and writing of fractions and the transposition of
the common fraction to the decimal and vice versa are almost daily
occurrences.

To the student who cannot. master relative sizes, volumes.
weights, and other dimensions and who does not have a mental pic-
ture. of fundamental units, such things as the capacity of bottles
or laboratory glassware constitute a never-ending problem.

An examination was given to a number of recent high school
graduates. It may be of interest to observe that they came from
large city, small city, and small town high schools. They were'
given a problem which is not an uncommon one in everyday prac-
ticeto calculate the volume in gallons of a drum (eylinde-i.
The figure of 231 cubic inches in a gallon was furnished, but not
the rule. They all knew the rule and how to apply it. The
dimensions of the drum were stated to be 36 inches in height, and
18 inches in diameter. One student's answer was "Four gallons."
He had made a mistake in calculation but did not observe that
almost anyone could hazard a guess or make an estimate that
would he closer to the real answer.

Some practice. in addition to that of actually proving re-
sults, should be given to the end that a student will not present a
result that is ridiculous. It is needless to offer more than the
above suggestion to an intelligent teacher as to the field open in
the laboratory for the use of mathematics.

The subject of percentage is very important and it likewise is
a much abused subject in these professions. We use not only true
percentage but approximate percentages and near percentages;
and therefore, unless its real meaning be perfectly clear to the
student, much confusion results. It is very doubtful if the student
exists who cannot calculate 3r,`, or 6 ; of any given number of
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dollars or any given number of pounds, but the converse of even
such a simple problem always seems difficult. The application of
percentage to business problems, to percentage strength of com-
pounds and to the mixing of substances of different strengths, to
the dilution of substances to a definite percentage strength, and to
the fortification of others always seems to mean something dif-
ferent from the old friend, percentage, of grade school days. There
are, of course, some things that interfere with the mixing of sub-
stances of different percentage strengths that complicate what is
otherwise a simple mathematics problem. For example, one hun-
dred parts by volume of 95r,; by volume alcohol mixed with 100
parts by volume of water will only make about 190 parts by volume
instead of 200 parts. Such procedures certainly should be taught
in an applied course and not in a preliminary course confined to
pure mathematics. It would he helpful, however, if teachers could
employ percentage in other ways than the relationship of it to
financial considerations. Why not study ratio and proportion in
mixtures such as concrete, one cement and three sand, or cement,
sand, and crushed stone, and then express them in terms of per-
centage? How about volatile matter and ash from coal? Such
examples would help us in percentage purity of chemicals, per-
centage composition of compounds, and percentage strength of so-
lutions.

Under the heading of the calculation of dosage we make use of
both common and decimal fractions and it is often necessary to
add. subtract, multiply, and divide them. The average student
has usually forgotten iiow. but it does not take long to bring back
this knowledge, and my observation is that once back, it stays,
because it is in daily use.

A nurse might be confronted with the problem of giving a 1/10
grain dose of a substance and all that she has are tablets of the
substance, each containing 1/4 of a grain. Fractions first, of
course, and then knowledge that a tablet cannot be divided with
safety, that small amounts cannot be weighed accurately upon the
apparatus at her disposal, and so on ad infinitum.

If time is not too short the student should be taught why
% % = 7/12 and why the common denominator is used. I here
mean to express that the student knows how to make such cal-
culations if he has not forgotten mechanical instructions, but he
does not seem able to see practical everyday problems and usage.
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He views these calculations as school tasks of to-day and does not
see their relationship to life problems.

When it comes to calculating specific gravities of solids and
liquids, the laboratory helps the student's mathematics. The old-
fashioned drill of giving two factors in a three-factor product to
find the third often simplifies the entire teaching of this subject.
After the student learns what specific gravity is and begins to use
it, his mathematics becomes clear. This is a subject which he has
usually had in high school physics or in grade school mathematics,
and sometimes even in college physics, but its value has always
been academic to him.

Calculation of allowable errors in weighing and measuring is
always more or less difficult. This again may often be compli-
cated by percentage. Suppose a student is told to prepare five. gal-
lons of a mixture so that one teaspoonful will contain of a
grain of strychnine sulphate. How accurate must be the balance
upon which the strychnine is weighed, and what percentage of
error in either direction does his good judgment tell him is allow-
able? Here again is applied mathematics. Percentage solutions,
solutions made on a ratio basis, and saturated solutions all involve
something besides mathematics, but the simple mathematics must
be known first. The difficulties usually involved in teaching con-
version of temperature scale readings are obviated by teaching these
readings as definite measurements of length. Interpolation in spe-
cific gravity tables becomes easy to the student who has used
logarithms and this last subject is one that is needed by the student
of medicine and pharmacy very often indeeti. Old-time alligation
has to be taught pharmacy students because State Boards demand
it. The writer, however, is not an advocate of its use.

A student always needs to understand problems of interest,
discount, profit and loss, and many other problems found in the
average commercial arithmetic.

The Preparation Students Should Have. The writer feels
that he will not do justice to himself unless in elosinr lie states
his own opinion upon the preparation of students in mathematics
in order to make professional work easier. That opinion is that
arithmetic should continue into the high schools. either in the form
of the old-fashioned advanced arithmetic or in the form of review
in the senior year. I make this statement knowing full well the
objections I should hear if I happened to he a well-known teacher
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of mathematics. I hasten to add, however, that arithmetic should
not replace the algebra, geometry, and in some instances higher
mathematics now taught; it should be taught in addition to them.
A student expecting to study any one of the four professions which

we have discussed, or one expecting to study chemistry or physics,
needs mathematics every day.

Much of the necessary arithmetic: may be reviewed by the
teacher of algebra. and may I add here that the teacher of algebra
should endeavor at all times to show, where possible, that much
of algebra is really a review of arithmetic and is after all an easier
method for solving many simple problems. The simple equation,
to find the value of x, still seems to he difficult for many students
to solve. They still find it difficult to form a simple equation and
solve it, and for such studoits the use of the simultaneous equation
is out of the question.

In my own institution we were once confronted with the prob-
lem that our required course, embracing mathematics, was too se-
vere; that students who did not wish to become scientists and real
professional men should he permitted to take economics instead
of mathematic and language. It was their desire to know merely
enough of science to he safe technicians, and otherwise they would
have purely business interests. It soon developed that those who
could not pass in mathematics felt they could join this second
class, and so our poor students went to the economics classes and
(lid not endear us to the professor of economics. Before long we
discontinued this practice, for we arc of the opinion that business
as well as science needs men of brains who have a working knowl-
edge of mathematics.

I must plead guilty to belonging to that class of old-fashioned
people who, if given the chance, would require for high school
graduation arithmetic., algebra (three semesters), plane and solid
geometry, and as much more a could be put into the course. Some
of the writers upon mathematics have felt that a knowledge of
mathematics and an ability to think do not necessarily go hand
in hand and that the first. does not tend to develop the latter; but
those of us at this end of the scale are usually fairly certain that
when we get a student who is a good student of mathematics and
has been well grounded in the subject, most of our troubles fade
into nothingness so far as he is concerned. May I add that I do not
approve of applied subjects of any kind until after the funda-
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mentals have been taught? There is always the danger of slighting
the fundamental for the more interesting application.

I wish the specialist, the real mathematics teacher, to give thestudent his elementary training. I know the specialist will do thispart of the work well, and I can then find the means to teach thestudent the practical and professional application of the mathe-
matics he has learned.



MATHEMATICS AND STATISTICS
fly HELEN M. WALKER

Teachers College, Columbia University, New York City

1. STATISTICAL METHOD IN PRESENT-DAY THINKING

Importance of Statistical Method, More and more the
modern temper relies upon statistical method in its attempts to
understand and to chart the workings of the world in which we
live. Particularly in those sciences which deal with human beings,
whether in their physical and biological aspects or in their social,
economic, and psychological relations, the spirit of our time asks
that its conclusions be based not so much upon the distinctive re-
actions of one or two individuals as upon the observation of large
numbers of individuals, the measurement of their common likenesses
and the extent of their diversity. As the data thus gathered from
mass phenomena become extensive, it becomes imperative to have
methods of organization to bring the facts within the compass
of our understanding, methods of analysis to make the essential
relations appear out of the mass of detail in which they are hid-
den, and methods of. classification and description to facilitate the
presentation of the data for the study and consideration of other
persons. Thus statistical method becomes a telescope through which
we can study a larger terrain than would be accessible to our
unaided vision.

Use of Numerical Data. As the area of investigation is wid-
ened to include larger masses of individuals and as the nature of
the inquiry becomes more precise, it is inevitable that data and
conclusions shall assume numerical form. To quote Sir Francis
Calton:

General impressions are never to be trusted. Unfortunately when they
are of long standing they become fixed rules of life, and assume a prescriptive
right not to be questioned. Consequently those who are not accustomed to
original inquiry entertain a hatred and a horror of statistics. They cannot
endure the idea of submitting their sacred impressions to cold-blooded veri-
fication. But it is the triumph of scientific men to rise superior to such
superstitions, to devise tests by which the value of beliefs may be ascertained,

111
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and cu feel sufficiently masters of themselves to discard contemptuously
whatever may be found untrue,

Sir Arthur Newsholme writes:
As the scupe of a science widens, it is generally found necessary sooner

or later to adopt numerical t'tandards of comparison. In medical science
this is found to be especially necessary, though perhaps in no other science
is the difficulty of exact numerical statement so great. The value of experi-
ence, founded on an accumulation of individual facts, varies greatly according
to the character of the observer, As Dr. Guy has put it "The sometimes of
the cautious is the often of the sanguine, the always of the empiric, and the
never of the sceptic; while the numbers 1, 10, 100, and 1,000 have the samemeaning for all mankind."

Adolphe Quetelet, the great Belgian astronomer, mathemati-
cian, anthropometrist, economist, and statistician, in the first lec-
ture of a course on the history of science, said:

The more advanced the sciences have become, the more they have tended
to enter the domain of mathematics, which is a sort of center towards which
they converge. We can judge of the perfection to which a science has comeby the facility, more or less great, by which it can be approached by calcu-lation.

Relation of Statistical Method and Statistical Theory.
Clearly, then, statistical method must be grounded in statistical
theory, which is essentially a branch of mathematics. Indeed, sta-
tistical theory has its roots in the mathematical theory of prob-
ability and the work of the mathematical astronomers, notably
Gauss and Laplace. who early in the nineteenth century built up
a theory of errors of observation in the physical sciences. Statis-
tical method is completely dependent on statistical theory, yet the
two have important differences in purpose, in procedure, in tech-
nique, and in the type of talent and preparation needed for suc-
cessful prosecution.

Statistical theory is developed for an ideal situation seldom
completely realized in practice. Statistical method almost alwaysinvolves a measure of compromise between the recalcitrant facts
which life presents for analysis and a mathematical theory which
postulates a particular form of distribution or other ideal circum-
stances only approximated by the data. The dependable statisti-
cian recognizes that the assumptions implicit in his formulas are
not completely fulfilled. but lie secs that to use these formulas
and continue the investigation will afford a far closer approach to
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the truth he seeks than mere conjecture and intuitio:., which may
be the only alternative.

Difference Between Statistical Method aad Mathematics,
The man who develops a new piece of statistical theory works as
a umthematician and faces only those obligations ordinarily incum-
bent upon the mathematician. He must 6tate his assumptions, he
must avoid contradictory assumptions, he must be careful that
his conclusions follow logically from his premises. I3eyond that
point, he is free to make whatever assumptions are convenient
for the simplification of his argument. The worker in statistical
method who applies to the solution of some practical problem a
formula thus developed by the mathematician has an additional
obligation. He must not only know the 1188111111)001IS on which
the formula rests, but he must also b now the content of the field
in which he is working well enough to determine whether these
assumptions can be appropriately made in that particular situation.
It is probably not essential that he be able to go through the steps
of the derivation of each formula, but unless he knows what as-
sumptions were made in that derivation and unless he ascertains
that these assumptions can be reasonably made for his data, there
is a possibility that he may come out with conclusions which are
far from correct. Herein lies the weakness of many statistical
investigations, either that the research worker does not know the
mathematical theory well enough to recognize the assumptions
upon which his procedure rests, or that he is not sufficiently at
home in the field of research to pass upon the validity of those
hypotheses,

Knowledge of statistical theory is not enough for the man who
would plan important statistical investigations. Neither the pure
mathematician nor the man innocent of mathematical training
makes the best worker in practical statistics. The expert in sta-
tistical theory needs also a rich knowledge of the content of the
field in which he would work. The general method of statistics
is the same for all fields and the elementary training need not
differ much whether a man is to work in biology or psychology,
in economics or education. Therefore it is sometimes suggested that
a consulting statistician trained primarily in pure mathematics and
in statistical theory may act as consultant for a large number of
important statistical studies in various fields, the data for which
are collected by others and the results worked out by others. By



114 THE SIXTH YEARBOOK

providing expert advice on the method of research, sorb a man
might make it possible for important studies to 1w milled out by
men interested in the content but ignorant of statistical method.

This solution has serious drawbaeks. Without a general knowl-
edge of the field of study, it is difficult to choose appropriate statis-
tical procedure. Without a consuming interest in the outcome of
the particular study and an intimate knowledge of its details, fruit-
ful leads do not arise, "hunches" are lacking, and the most signifi-
cat facts and relations may be overlooked. Recently a research
worker in biology wrote to ask me if he was justified in using a
certain procedure. Not being a biologist I could offer no creative
suggestions, and could only say, "The assumptions underlying theformula you mention are thus and so. I should be suspicious ofthem, but a biologist will have to pass upon their applicability,"

On the other hand, the view is common that the mathematicianwho develops a formula has welded a tool which the tionmathe-
matical psychologist or economist or educator can profitably use
without knowledge of its derivation, and that the formulas printed
in the textbooks constitute a dependable machine into which datamay be fed and from which conclusions, even discoveries of vast
moment for human welfare, will eventuate automatically. Twoboys on the top of a Fifth Avenue bus arrested my attention with
a scrap of corm.rsation. Said the first, "But I don't understand

; whereupun his companion replied, "Understand it? Gosh,
n an, why should you try to? It's a formula!" The world is w1
of men who want to take formulas on faith, arguing that they canutilize a icelmique whose basis they do not understand, exactly
as th..y drive an automobile which they could not take to pieces
and reconstruct. The analogy has something to recommend it.
Certainly, most of the computation and tabulation vaned for in astatistical study can be done by clerks wl:o merely follow diree-tins. For the man who is directing ruearch, however, the analogy
tails. In driving a ear we have a perfect nni obvious check upon
the success with which gears and steering wheel are managed. In
choosing a statistical procedure, no such obvious check is available.
A formula is always based upon assunptions made during the
process of derivation and these assumptions limit its application.
The formulas printed in texts are often special cases of longer ones
an deduced from them by the application of very special as-
sumptions. The choice of a different formula may vitally affect
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the nature of tads results, but there is usually nothing in the re-
sults themselves to validate the method by which they were
reached,

The Nature of Statistical Inference, Statistical reasoning
differs train mathematical reasoning in another important way,
For the mathematician, conclusions follow inexorably and in
evitably from premises; his reasoning eventuates in a single im-
mutable law which is always invariably true when the original con-
ditions prevail, The statistician derives no law which can apply
invariably to all members of the population which he studies; but
he deduces trends, tendencies, which are true in the main for the
group, but which may not hold at all for a given individual, He
speaks of the central tendency of the group and of the tendency
of the group to depart therefrom, of the scattering or divergence
of the group from that central tendency, The mathematician
knows all his premises; the statistician can usually measure only
part of the influences which play upon the subjects he is s tudying.
The statistician is usually working in a field where events are
brought about by a highly complicated plexus of muses only 'mil
of which can be measured, and therefore he speaks of probability
rather than certainty, He recognizes that when he is studying one
hundred cases and is attempting to generalize for ten thousand
cases the results which he obtained from the hundred, then every
measure he has computed fur the hundred probably differs a little
from what he would find if he computed the same measure fur
the ten thousand. Such samIding errors cannot possibly be avoided
and can be mitigated only by the use of larger samples. When a
mathematician speaks of an error, he means a mistake. When a
statistician speaks of a sampling error, or when he computes a
probable error in the attempt to measure the signifivnce of his
sampling error, he is nut dealing with a mistake but with a funda-
ental characteristic of the nature of the universe which makes

one sample differ slightly from another.
It is the very essence of statistical method that it describes the

trends and the general characteristics of pipulatios, but that these
tendencies cannot he asserted us necessarily valid for each of the
individuals which constitute the group. To describe these tenden-
cies and relations with objectivity and precision, quantitative and
numerical measures are naturally called for. If we say, "Most
of the teachers in time country schools of America receive very low
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think statistically in order to read his newspaper and the current
magazines.

Suppose, for example, that. a nutrition expert interested in the
feeding of small children wants to find out whether two-year-olds
have their appetites stimulated by the color of the food which is
offered them, and plans to make daily observations of fifty nursery
school children. His training is in child psychology and food
chemistry, but as the investigation progresses he finds himself
involved in a statistical study of some complexity. Or again, a
teacher of physical education wants to arrive at an index of
physical capacity which will allow him to estimate in advance
the ease with which a given high school student can master a
particular sport, say swimming. His interests are in anatomy and
physical training, while this problem is largely one of applied
mathematics.

It, Iris introduction to Wood's Measurement in Higher Educa-
tion f lt)231, Professor Louis Ternian says:

prom the language of statistics there is no escape if we wish to go beyond
the limits of p,rsonal opinion and individual bias. Worthwhile evaluations
in higher e,11.ration will continue to be ns rare as they now unhappily are
until the rank and the of college and university teachers become able to
think in more exact quantitative terms than they are yet accustomed to.

More than a quarter of a et :dury ago 11. (;. Wells said:
'bite to tr ma thelllatieS is a sort of supplement to languge, atTording a

means of thought about form and quantity and a means of expression more
exact, compact, and ready than ordinary language. The great body of
physical science, a great deal of the essential facts of financial science, and
endless social and political problems are only accessible and only thinkable
to those who lutve had a sound training in mathematical analysis, and the
tune rusty not I u far remote when it will be understood that for complete

o ti as an efficient citizen of one of the great new complex world-wide
stales that are now developing it is as necossary to be able to compute, to
111111k in :11 cragps and maxima and minima as it is now to be able to read
and to write. (Mankind in Ike Making, 1904, pp. 191-192.)

The time of which Wells then spoke is now imminent.
Mathematical Preparation. How much mathematics should

one know before undertaking the study of statistics? No au-
thoritative answer can be given to this question, for no one, so
far as the writer knows, has made a careful, unprejudiced analy-
sis to see what mathematical knowledge is needed for variou.4
statistical undertakings. If a canvass of expert opinions were
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made, they would undoubtedly range all the way from that of
the mathematician who would insist upon a doctorate in pure
mathematics to that of the man who once told the writer that he
considered much study of mathematics an actual detriment, be-
cause he thought a statistician was freer and more original if he
did not know too much about mathematics. It is obvious that
there are many levels at which statistical work is carried on, and
it would be valuable to have a thorough study made of the op-
timum mathematical preparation for each level. The suggestions
which follow must be interpreted as based solely on the personal
opinion of the writer, which in turn is derived from the observa-
tion of students and from the results of a statistical study of the
preparation and accomplishment of over four hundred students of
elementary statistical method.

The clerical worker who merely tabulates and copies raw data
probably performs no mathematical function at all. The computer
who works under the close supervision of someone else needs to
have a flair for figures, skill on computing machines, a high sense
of accuracy and reliability, and enough knowledge of arithmetic
and algebra to enable him to see short cuts in arithmetic opera-
tions, but he can be a competent worker on this level with relatively
little theoretical training. He can make extensive computations
under direction without much understanding of the import of his
work.

The student who hopes to do anything at all with the theory
of statistics should have, as minhnum preparation, differential cal-
culus. While it is true that Yule wrote his Introduction to the
Theory of Statistics without any of the notation of the calculus,
nevertheless he could not avoid its general method, and most of
his readers will agree that he did not succeed in simplifying his
material by this expedient. The student who goes beyond the first
stages in his study of statistical theory and who attempts to read
the original memoirs in which important derivations are set forth,
will find that he needs to know integral calculus, differential equa-
tions, theory of probability, a great deal about the convergence of
series, function theoryin fact, almost any form of mathematical
analysis which he has studied will be of ultimate use. The geome-
tries are in general less pertinent, although there arc one or two
important papers which have utilized geometric concepts. The
man who is to do original research in statistical theory will be
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thankful for all the mathematical analysis he has studied, and will
be exceptional if lie does not feel the urgent need of more training
than lie has had in mathematics.

Between these extremes, the clerical worker and the student of
theoretical statistics, there is a large and rapidly growing group
whose needs are more difficult to define and to meet. These are
the men with primary interest in other fields who need some knowl-
edge of statistical method in order to read the technical literature
of their field, to interpret and .evaluate the research of their fel-
lows, and to organize data derived from studies of their own. They
are often impatient with any 'ittempt to teach them statistical
theory, and they say they are interested "only" in practical in-
terpretation and critical evaluation, failing to understand that
critical evaluation and wise interpretation often call for a fine com-
bination of acrinen, wide knowledge of the field of study, and some
knowledge of statistical theory. The man who is reduced to quo-
tation of what other people have said or written about a formula,
having no first-hand knowledge of its bases, may also be limited to
imitation and quotation when he attempts to interpret its practi-
cal meaning in a concrete case,

However, let us suppose that we are attempting to teach as
much of statistical method as can be compassed without the deriva-
tion of formulas, teaching only statistical computation and as
much critical interpretation as is intellectually feasible to students
who make no mathematical derivations. What mathematics is
essential to such a program? If we postulate a course in statistics
stripped to a minimum of mathematical content and designed to be
of the utmost practical help to time person who has studied no
mathematics: beyond the high school, what topics in secondary
school matheinaties will be most needed? Here again it is neces-
sary to make a declaimer and to admit that there is no authority
for an answer save personal opinion based on a study of the needs
and difficulties of a good mummy mature students suffering from
mathematical anemia.

The question falls into two parts: Which of time topics now
commonly taught. in the secondary schools do students of elemen-
tary statistics use most? What topics not commonly taught in
secondary school mathematics would be useful to the prospective
student of statistics, simple enough to be grasped by high school
pupils, and of sufficient utility for the social sciences to merit
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consideration as possible additions to an already crowded cur-
riculum?

III. TOPICS IN ARITHMETIC AND ALGEBRA MOST NEEDED PON
BEGINNING STATISTICS

Attitudes and Habits. For success in the general processes of
elementary statistical method, it appears that mathematical in-
formation and specific skills are less important than certain atti-
tudes of mind which are sometimes regarded as by-products. That
elusive thing which we call mathematical ability seems to be more
essential than mathematical training unless the training produces
these habits of mind. If a student has forgotten how to handle
radicals and logarithms he can relearn these techniques easily.
If he has never rightly understood the import of a formula, if he
never knew what the solution of equations or the reduction of
fractions were about but merely acquired skill in performing cer-
tain tricks which produced an answer, if he thinks variable and
unknown to be synonymous terms, if he has never seen arithmetic
generalized into algebra, these are matters much more serious
than a total lapse of memory. Worst of all, if lie is unable to
think in terms of symbolism, is frightened by algebraic formulas,
panic-stricken when obliged to compute, and without conscience in
the matter of accuracy, he has a heavy load of old habits to dis-
card before he can hope for any progress in statistical studies.
Fortunately, the ways of thinking which the statistician would
urge the mathematics teacher to inculcate and develop are ways
of thinking which mathematicians also value highly. The fol-
lowing are of central importance:

1. Ability to Think in. Terms of Symbolism. The language of
statistical theory and method is highly symbolic, and no other
single ability seems so closely related to success in this field as
the ability to read meaning directly from symbolism. In a group
of prognostic tests which we have been giving to students of ele-
mentary statistics at the beginning of the first terms work, tt short
symbolism test including only eleven items shows a correlation of
.55 with marks at the end of the first term. For so short a test
this is remarkable. When the symbolism test is made longer,
the correlation will undoubtedly be still higher. Of all the other
prognostic tests with which we have been experimenting, none, not
even a standardized test of general intelligence, shows so close a re-
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lationship to the term's marks. Even for the pupil who will never
study statistics, this ability to use symbolism as a language in
which to express his ideas is one of the most readily defensible
aims for the teaching of algebra, though not one of the most easily
realized. Teachers of high school mathematics can scarcely put
too much emphasis upon translation from symbols to words and
from words to symbols. In addition to practice in these two forms
of translation there should be practice in expressing in symbolic
form the pupil's own ideas about quantitative matters, a sort of
free symbolic composition. Ninth grade pupils enjoy this when
the ability has been developed by carefully graded exercises. It
would be of inestimable value to those who will some day study
statistical method.

2. Correct Thinking About Variables. Hazy thinking which
permits a pupil to confuse variables with unknowns because both
are often represented by the letters x and y may not be inconsistent
with high marks in a high school algebra course, where it is often
possible to achieve correct answers blindly by merely following
the rules of the game; but such confusion is a very serious handi-
cap when algebra is to be applied to statistical method. For ex-
ample, suppose we let x, represent the height in inches of one boy,
2%, the height of a second, and so on, x being the height of the nth
boy. Then the sum of all the heights divided by the number of

2'x
boys will be the mean (or average) height, or H N= . Now
clearly x is not an unknown here, for we are not trying to find the
value of some missing number, but it is a variable representing a
class of numbers to all members of which the formula refers.

In arithmetic a symbol is always associated with the same
number, 4 having always the same meaning no matter where it
occurs. In algebra the pupil early discovers that x or n (or any
other letter) may have one value in one problem and another value
in another problem; but so long as he is solving such an equation
as 3x -I- 2 = 20, x has only one value for that equation. He sees
readily enough that x may mean 6 in this equation while in an-
other it may mean 4 or 7 or something else, but he is still essentially
on the arithmetic level because during the discussion one symbol
stands for one number, that number being temporarily unknown.
To give the pupil a concept of variables is psychologically more
difficult as well as more stimulating and ultimately more impor-
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tant. This is one of the most valuable contributions algebra makes
to human thinking and ought to be approached with care and
thoroughness. The enormous power of algebra is largely in'ierrnt
in the fact that a single symbol can be used to represent every
one of a class of numbers. Almost any bright pupil can learn to
manipulate formulas mechanically, to evaluate the formula by sub-
stituting given values of the variables, and to change the subject
of the formula; but. unless he has grasped the meaning of a vari-
able he cannot think properly about formulas, cannot compose for-
mulas to express relations, cannot have any idea of functionality.
unfortunately, many pupils can write glibly 13n *1- 7n = 20n with-
out realizing that this means, "If seven times any number is added
to thirteen times that same number, the result will always be
twenty times the original number." If anyone doubts this state-
ment. it is only necessary to ask a class to find the value of
13.X 43 7 X 43. and to hand in all their scratch N% ork, and then
to note how few think of multiplying 43 X 20 and how many make
the two separate multiplications and add the results.

In statistics we deal constantly with variables, while only
seldom do we solve equations to discover the value of unknowns,
and the student. who has learned to think of x as standing always
for a single missing number has a mental handicap to overcome.

3. Freedom from Fear. Among mature, educated men and
women, graduate students with intelligence well above average,
there exists a surprising amount of fear of anything savoring of
arithmetic or algebra, old inhibitions which are rooted in arith-
metic failli. -s and worries in the early grades. old strains and
anxieties which can often be traced back to a teacher who was
scornful when answers did not come out right, or who tried to
hurry children beyond their capabilities. It is usually a revela-
tion to the student to discover that a considerable part of the fear
and worry which he had been attributing to the difficulties of sta-
tistics actually had their origin in early misadventures with arith-
metic or algebra, and when to this discovery he adds the discovery
that a little well-directed practice will rid him of his sense of
mathematical inferiority, he achieves a joyous freedom. But ought
any subject to have such serious emotional connotations among
men and women who are otherwise sensible and intelligent? Will
the boys and girls who are being taught arithmetic, algebra, and
geometry to-day have to carry a similar load of emotional condi-
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tioning toward mathematics? Have we even yet learned to adapt
our teaching to the pupil so that he may work up to his individual
capacity without being constantly humiliated and scarred by fail-
ure to do successfully work which is beyond his capacity? Can we
learn to teach so that boys and girls may have the triumph of
becoming mathematical adventurers and discoverers and so se-
cure a self-confidence which will be a positive force in building
their personalities?

4. Right Attitudes Toward the Outcome of Computation. The
secondary school pupil usually considers his computations, his
algebraic manipulation, his geometric reasoning, and his trigo-
nometric analysis vindicated by the approval of a teacher or by
agreement with published answers. Methods of checking do not
interest hint much; they seem like an unnecessary labor imposed
by an exacting taskmaster when comparison with an answer known
to be right offers a more direct proof of his work. In statistical
investigations there is no such authority against which one may
measure his work, and methods of checking become of paramount
importance. The habit of checking each step of a computation
or of finding two independent ways to reach the same result must
be developed in any one who hopes to do valuable statistical
work,

The habit of estimating in advance of computation what is a
probable vabe for its outcome and of checking each computed
value by common sense to see if it is reasonable will save the
statistician much grief. Also, time general value of these habits
makes them worth considerable. attention from the teacher of
mathematics.

A conscience about accuracy is necessary to the good statisti-
cian. The correctness of his work is ordinarily taken for granted
by his readers, and only rarely does one man recompute the meas-
ures published by another. His work must stand by itself and he
must he able to vouch for its correctness. He should be sensitive
about the accuracy of his computations, of his tabulations, of the
measurements from which his data were derived. Tie should rec-
ognize that the number of decimal places which he carries in his
final results is a tacit pledge of the degree of accuracy of his origi-
nal measurements, and that he should carry these results only so
far as is appropriate to the precision of the original measurements.
He must always realize that unless his problem is a trivial one,
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the outcome of his computations may provide information on
which will be based decisions of importance for human welfare,
and that therefore he has no right to offer any but trustworthy
work.

What training can we give a high school student to develop in
him this sense of responsibility? Answers are available for check-
ing; why bother about excessive accuracy? No social conse-
quences wait upon the outcome of the usual algebra problem; aslip in the progress of a geometric proof can bring disaster to nu
one unless it be to the perpetrator of the slip. Certainly a desire
for accuracy does not arrive as the result of verbal argument on
the part- of the teacher.

Probably the best expedient is to make one pupil or a small
group of pupils responsible for securing data and computing the
results in some matter about which the class wishes to have in-
formation. This may approximate the situation of the statistician,
whose work has important social consequences and who is stimu-
lated by the thought that the outcome may remain unknown unless
he finds it.

Information and Skills. For a course of the type we are now
postulating the necessary mathematical techniques are very sim-plcskill and a degree of rapidity in computation, knowledge
of arithmetic short cuts, ability to place a decimal point, to take
square root, to read a mathematical table, to change the subject of
a formula, to evaluate a formula, to transform fractions, to op-
erate with complex fractions, to plot points on coordinate axes, to
make statistical graphs and to interpret them, to draw the graph of
a linear equation and to know the import of the slope of a line,
and to handle radicals. The use of a slide rule, of computing ma-
chines and of logarithms is highly desirable, as is also the ability
to interpolate.

The formula given below indicates the complexity of structure
to be encountered in computing a coefficient of correlation;

a be

e

N2 I` v -
One should he able to change the form of this fraction as con-
venient and to know enough about radicals to deal with the de-
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nominator. Again, it is necessary to evaluate expressions of the
forms

v 1 (1 a2) (1 b2) (1 c2),

a be
a

bV 1 e2 V 1 (12
and

cV1 V1 g2 V 1 b2 V 1 c2.

These suggest about the limit of algebraic difficulty likely to be
encountered in a first-year course in which formulas are not
derived.

IV. STATISTICAL METHOD FOR HIGH SCHOOL STUDENTS

A Challenge to Teachers. Any one vitally concerned with
the teaching of high school pupils and observant of the rapidly
growing public need for some knowledge of quantitative method in
social problems must be asking what portions of statistical method
can be brought within the comprehension of high school boys and
girls, and in what way these can best be presented to them. If
some aspects of statistical method are to be taught in high school,
shall this be done by the mathematics teachers or by the social
science teachers? Shall a new course be created, shall a new unit
be added to the social science work, or a new unit be added to the
work in mathematics? Shall it be required or elective, for seniors
or underclassmen?

These questions call for much study and creative teaching on
the part of high school teachers with pioneering spirit, and there
seems every reason to expect that the next decade may produce
significant changes in the program of both high schools and col-
leges. The situation is full of challenge for those teachers of high
school mathematics who like to leave the beaten path and adven-
ture a bit, who are not afraid of the hard study necessary to
prepare themselves for teaching in a new field, and who have a
genuine interest in that type of social problem which can be ap-
proached by a quantitative study of mass phenomena. Such
teachers %rill need first to make themselves thoroughly at home
in statistical method, not merely with its elementary phases but
with its spirit and some of its theory. It will be most unfortunate
if teachers who have had only a six-weeks' summer course in statis-
tical method are the ones who undertake this pioneering. because
the selection of material for a simple course is not in itself a simple
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task, and cannot be well done by the person whose knowledge is
elementary.

Suggested Materials. As a starting point for creative and
experimental work in organizing units in statistics to be added to
high school mathematics courses, the writer suggests a number of
topics which she has taught to ninth grade pupils of average ability
who found the material interesting, stimulating, and no more diffi-
cult than the rest of their ninth grade mathematics.

1. Graphs. Almost any good junior high school text now con-
tains valuable material on the statistical as well as the mathemati-
cal graph. Special emphasis should be placed on the criticism of
published graphs, the analysis of their strong and weak points, and
suggestions of alternate ways in which the same material might
be presented, with the advantages and disadvantages of each form.
Most of the modern junior high school texts now include a treat-
ment of the histogram and frequency curve. From these, the
cumulative frequency curve follows easily. If the raw frequencies
are turned into per cents and two or more distributions are plotted
on the same axes, the resulting diagram provides a way of com-
paring two groups which reveals at once many things not dis-
cernible from the original distributions. Such diagrams may be
used to compare the work of two sections of a class on the same
test, to compare the work of a class with published norms for a
standardized test, to compare scores made by boys with those
made by girls, or to compare the test scores made by a class at
the beginning of a term with the scores of the same class on the
same test at a later date. All of these comparisons are matters
of genuine interest to the class.

For later statistical work, it is valuable to know how to find
the equation for a given line and this is not necessarily a task so
difficult that it must be reserved for college courses in analytic
geometry. Incidentally, this problem has as much intrinsic mathe-
matical interest as its converse which is commonly taught, and it
can be treated in a manner simple enough for ninth grade pupils.
The pupils may be given a practical problem in measuring any
two variables that have a linear relationship and plotting the re-
sulting pairs of measures on coiirdinate axes. Because of slight
errors of measurementunavoidable inaccuracies which are due
to the fallibility of human eyes and hands and measuring instru-
mentsthe resulting pairs of measures will cluster about a straight
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line without. actually falling upon it. After the data have been
plotted, the pupil should draw the straight line which he thinks
is the best fit for this swarm of points. Then he should find the
equation for this line of best fit. Such a problem may be used to
open up a general method of deriving laws which express ten-
dencies of physical or social data, to suggest the general method
of curve fitting as employed in the various sciences, to extend and
enrich the pupil's understanding of graphs. and to introduce the
idea of errors of observation, a concept pregnant with intellectual
challenge if treated by a teacher who has grasped its philosophical
import.

2. The Percentile System. The simplicity of the percentile
scheme (including median. deciles, quartiles, quartile deviation),
its frequent use to define the standing of high school or college
students on standardized tests, its wide usefulness for describing
the performance of an individual in terms of his position within a
group, the ease with which real problems within the comprehension
of adolescents may be assembled. and the fact that the process of
computing a percentile offers an attractive application of per-
centage. an introduction to the idea of interpolation and a simple
problem in intuitive geometry, all make the percentile system
admirably adapted to the end of the junior high school mathematics
course. Most of the topics studied in a course in statistical method
are so interwoven that no one of them can be truly understood
without knowledge of many others. Because of this interdepend-
ence of subject matter there seems to be a fairly circumscribed
choice of topics suitable for the secondary school. The percentile
system is one of the few topics which can be studied satisfactorily
without the vexation of continually needing an understanding of
advanced work to clarify its meaning. This is, moreover, a field
in which children can be encouraged to produce their own prob-
lems. to make measurements and to use the percentile system for
reporting results to the class. This furnishes an opportunity for
the pupil to get a VItle taste of the thrill of original research and
gives him a simple language in which to report the results of his
Own independent labors. This is less difficult for the adolescent
to understand than some of the problems in financial znathetnatics
which the junior high school pupil is mastering, and its social uses
are no less real.

3. Art.ragc:. The concept of central tendency, or average, is
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fundamental to the way the modern man thinks about his world.
We talk of the average length of life for various occupations, aver-
age mileage we get per gallon of gasoline, average sine of classes,
average cost of commodities, average age of men and women at
marriage, average salary of high school teachers, average age of
children entering high school. It is well for people to know that
there is more than one method for determining central tendency.
more than one kind of average, and that in some situations where
the arithmetic mean is misleading one of the others may give a
truer picture of the group,

The arithmetic mean is easily mastered, likewise the mode. If
percentiles have already been studied, the pupils know the medianand are ready now to consider the advantages and disadvantagesof each of these three averages and to discuss which is the best.
to use in a given concrete situation. While the harmonic and
geometric means are used somewhat less frequently in practice,they afford attractive illustrations of mathematical principles and
provide excellent applications for work in fractions and in log-
arithms, and are probably not too difficult for high school work.
(Because 1 have not tried to teach the harmonic and geometric
means to high school pupils, I hesitate to make a definite recom-mendation.)

The discussion of averages provides an opportunity to clarify
for the pupil the essential nature of statistical inquiry, to showhim both the importance and the limitations of drawing informa-tion from individual cases, and also the necessity of broadeningthe scope of a study to take in large groups of cases in order to
generalize results of observation. For the sake of a satisfactory
life among his fellows he needs to see that an average is but a
partial descripti6n of a group, so that he may not fall into the
error of scorning individuals who deviate from that average. He
can be shown the need for a measure of the variability of a group
as well as a measure of its central tendency. In the percentile
systEm he has already seen such a measure, and he may be told thatthere is a measure of variability which goes with the arithmetic
mean just as the quartile deviation goes with the median, but thatit is a little more difficult to understand and that he will have to
wait for further work in statistical method to find it.

4. Relationship. The tendency of two traits to be associated.so that .. of them is large the other is likely to be large
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RANK IN
CNlist"l'AtioN

RANK IN
Pitt 4li1.1.31,401.VINti_--..._

Mary 1 4
John 2 1
Dick . 3 2
Esther 4 5
Bertha 5 3
Tom 8
Jack 7 8
Carl 8 6
Edward 9 10
Josephine 10 7

negative correlation between the two abilities, the child who stood
first in one would be lost in the other, and the order of excellence
would be exactly reversed for the two lists. Evidently this situa-
tion shows neither perfect positive nor perfect negative relation-
ship, but there is a general tendency for the people who are high
in one trait to be high in the other, and for people who are low in
one to be low in the other also Therefore we say that the relation-
ship is positive, though not perfect.

We will now draw two parallel lines and will lay off on each
ten points equally spaced, as in the diagram on page 131. Be-
cause Mary has first rank in computation and fourth rank in
problem solving, we will draw a lir connecting the point 1 on
the computation scale with the point 4 on the problem solving
scale. Because John has second rank in computation and first rank
in problem solving, we will draw a line connecting the point 2 on
the computation scale with the point 1 on the problem solving scale.
In a similar way lines are drawn to represent the record of each
of the other pupils, one cross line representing the pair of scores
for one pupil. When correlation is perfect and positive all the
cross lines are parallel. The more crisscrossing there is, the
lower is the correlation, and the less relationship is there between
the two traits.

This form of diagram can be used to greatest advantage with
a small numher of cases, say less than twenty-five. The scatter
diagram described later can he used for very large groups.

A class may he divided into small committees, each committee
being responsible for a report on the relationship between one pair
of traits, so that when the charts from all the committees are
assembled they will illustrate a number of different problems,
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showing varying degrees of relationship, some high and some low.
Unless the pupil secs a variety of such diagrams he is likely to
attach too much importance to the particular shape of the one he
has drawn.

Psychologically, this use of a graph to portray a statistical re-
lationship is widely different from the graph of a mathematical
function and should be attempted only by a teacher who has insight
into the nature of statistical inference and who can bridge the

t1) ic,.. A ...JULY; Aqi

rather difficult gap between a mathematical function where there
is a perfect correspondence between two variables and a statistical
situation where the dependence is only partial. Parenthetically it
may be said that the writer is convinced that it is psychologically
easier for children to learn the mathematical graph first and the
statistical graph later as an application of the mathematical graph,
than to use the statistical graph to pave the way for the mathe-
matical graph, as is commonly (lone in junior high school texts.

b) &atter Diagram. Material of immediate interest to the
clas3 can be readily found for a problem in plotting a ::catter dia-
gram. This is an easy extension of the work in plotting points on
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coordinate axes and of the use of a step interval as studied in the
drawing of histograms and frequency curves. It results in a swarm
of points as did the experiment described in the discussion of find-
ing the equation for a line. When the scatter diagram has been
set up (see any elementary text in statistical method for the
procedure), marginal frequencies should be found and the mean
or average for each of the two traits should be computed. The
value of each mean should then be indicated on the scale of the
appropriate trait, and a line drawn across the diagram at that
point. The lines of the two means then divide the area of the
scatter diagram into four quadrants. The class may be asked to
note the number of cases which are above the mean in both traits,
below in both, or above in one and below in the other, and they
may be told that when most of the cases are either above the mean
for both traits or below for both, the two traits are said to show
positive correlation; when most of the cases are above the mean
for one trait and below it for the other, the correlation is said to
be negative. This is of course a very rough statement, but ninth
grade pupils understand it. They can also understand the general
import of the appearance o, the mate/ diagram. When the corre-
lation is high, the dots tend to cluster closely along a line; when
it is low, they tend to scatter indiscriminately over the diagram.

An exceptionally mature class can go further. They can com-
pute the mean for each vertical column in the table, marking its
position by a small red dot, and then can draw the line of best
fit for these red dots. In the same way they can find the mean of
each horizontal row, marking its position with a small blue dot,
and can draw the line of best fit for the blue dots. These two
lines are called regression lines, and they should intersect each
other at the intersection of the means of the two traits mentioned
in the preceding paragraph. If we find the slope of the first line
to the horizontal axis and the slope of the second line to the vertical
axis, and if we multiply these two slopes together and take the
square root of their product, that square root is the coefficient of
correlation. This, work would seem to be appropriate only for
advanced pupils in an elective course.

c) Histograms Showing Relationship. The use of histograms
to show the interrelationship of two vulgates may be illustrated
by data gathered in our elementary statistics "lasses at Teachers
College. At the first meeting of the class in the fall a battery of



MATHEMATICS AND STATISTICS 133

prognostic tests was given, the results from which were compared
four months later with the record which the same students made
in the first semester's work. Among these tests was one composed
of thirty statements purporting to be algebraic identities, and the
students were told to indicate which of these were true and which
false.
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1. SI MR; OF 151 STUDENTS IN A TRUE-FALSE TEST OF ALGEBRAIC RELA-.
TION S II IPS, TEAr II I.:RS COLLEGE, SEPTEMBER, 1928

Illack portion represcnts thirty-two students scoring 27 or more. Cross-
hatched portion represents forty students scoring 18 or less

Figure 1 is an ordinary histogram showing the distribution of
scores on this trite -false test., the area which represents students
with scores of 27 or more being black, the area which represents
students with scores of 18 or less being shaded by crosshatching.
There are 32 cases in the black area, 40 in the area shaded by
crosshatching, and 79 in the middle area, which is shaded by wide
diagonal lines.

Figure 2 is also a histogram showing the distribution of semester
grades inade by these same students in the course in etatistics.
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These grades are stated in such a way that the average grade is
approximately 50. From the original data sheet, not reproduced
here, the squares on this second histogram are shaded to correspond
to Figure 1. If a student had an algebra score of 27 or more, the
area allotted to him in this new histogram is black. If he had a
score of 18 or less, the area allotted to him is indicated by cross-
hatching.

A very close relationship between semester grades and algebra
scores would show the black squares all at the upper end of Figure
2 and the crosshatched squares all at the lower end. A complete
lack of relationship would show black, crosshatched, and wide
diagonal lined squares scattered at random over the area of t'
polygon. Colored crayons may he used to advantage. If a more
careful study is desired. the students might be numbered in the

a (4

41 42 4.1 4. 4. 47 4. ././ . to 3. ..0 .4. e 4.. - .
FIGurtE 2. SEM F:STER GRADES or 151 STI '1)1i N TS or ELEMENTARY STATISTICAL

ETII OD, TEM11 ELS ( *(11.1.1,1;E, JAN 1429

Iliad: portion resents thirty-tm students scoring 27 or more in the
algebra test.. Crossli...tehd section epr seins forty steilents scoring 18 or less
in the algebra test

order of their scores on tlw algebra test. and these numbers written
into the squares on both diagrams. Then it would be possible to
make a case study of the student who luld a high algebra score
but made only 36 in semester grade alai of the student with a low
algebra score who came up to 58 in semester record.

Statements of the following type can he derived from this
graph: Of the 22 students with lowest semester grades, only one
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had a high score on the algebra test. Of the 27 students with
highest semester grades, only one had a very low algebra score.
Of the 58 students with semester grades above 52 (more than the
upper third). only four i.ad a very low algebra score. Apparently
knowledge of algebra is not a sufficient condition for high semester
standing, but it seems to be almost a necessary one.

The Outlook for Instruction in Statistics. At present our
graduate schools contain hundreds of students of statistics who
have an inadequate background of mathematics. They struggle
against unnecessary odds because in their high school and early
college days no one revealed to them the vital contributions which
mathematics may make to the solution of human problems. If
they had seen then that. `the social sciences, mathematically de-
veloped, are to be the controlling factors in civilization," as W. F.
White has phrased it, they might have elected more mathematics
or they might have approached the mathematics which they took
with a mind-set which would make it function better when needed.
If they had begun the study of statistics earlier in their educational
career, there would still be time to acquire the mathematics which
they need, but making the acquaintance of statistical method only
after their graduate work in sortie other field is well advanced, they
find themselves in a very difficult position.

College courses in statistical inctliod are multiplying with great
rapidity, and the number of students enrolled is multiplying still
more rapidly. In all probability it will before long become cus-
tomary to require an elementary course in statistical method for
undergraduates who major in the social sciencesincluding psy-
chology, education, and biologyjust as laboratory work is now
required of those who major in the physical sciences; and then it
will probably become customary for a course in the mathematical
theory of statistics to be considered an essential part of the work
of a college department of mathematics. When these requirements
are made, certain topics are almost certain to sift down into the
work of the high school.

Do the teat hers of high school mathematics wish to leave to
the social science teachers the responsibility for instruction in quan-
titative methods of studying mass phenomena?
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By IL EMMETT BROWN
Littcota SOLout, Teachers College, Columbia University,

New York City

Natural Philosophy. Modern high school physics takes its
origin from certain courses called natural philosophy which, at
least as early as 1729, began to appear in the academies of Eng-
land. By the middle of the eighteenth century, they were BO
well established that several texts had appeared.

Natural philosophy was one of the subjects studied in the
academies in this country from the first. In 1754 we find one
Reverend William Smith teaching "natural and moral philosophy"
at the "Public': Academy in the City of Philadelphia."' It was a
part of the curricula of the English High in Boston (founded 1821)
and of the first public high schools in New York (1825).

These courses in natural philosophy were decidedly different in
character from the college physics of that time and from present-
day high school courses. They were descriptive and nonmathe-
matical even where the need for mathematical discussion was ap-
parently clearly indicated. Largely because of this lack of quan-
titative treatment, the texts somewhat resembled those that might
be used in some of to-day's courses in "Applied Physics." One
text, Ferguson's, which enjoyed considerable popularity from about
1750 to 1825, devoted sixty-two pages to machines and forty to
pumps. As Mann 2 indicates, these texts were attempting to meet
the demand for secular information whicl. the classics were unable
to supply. In many instances, the authors were men whose major

This chapter will deal with high school physics only. inasmuch as a similar
treatment for college physic's has already appeared. (See l'ougtion. .1. It., Training
in High 'School Mathematics Essential for S'arerss in certain ('ollugc subjects.
Contributions to Education, No. 403. Bureau of Publications. Teachers College,
Columbia University, 1930.) In this discussion, however, not only the m.ithematies
that is necessary for success in high school physic's will be discussed, but also the
general funetion of nuitheinst it's will he emplisiz -i.

+Brown, E. E.. The Making of Our Midtlic .wheels. Longulans, Green & Co.,
10(12.

2 Mann, C. IL, The Teaching of Phyortes, p. WI. The Macmillan Co., 1912.
136



MATHEMATICS IN PHYSICS 137

interest lay in other directions. Very frequently they were clergy-
men. Their purpose was "to bring the rapidly increasing scien-
tific knowledge of the times home to young people, without try-
ing to force upon them that study of mathematical forms and
their interrelations which was characteristic of the university
physics." a The character of these texts and their nonmathemati-
cal nature can best be illustrated by the following quotation from
the 1846 edition of The System of Natural Philosophy, by J. L.
Comstock, a physician. (The numbers refer to sections of the
original.)

8.5. If a rock is rolled from a steep mountain. its motion is at first slow
and gentle, but as it proceeds downwards it moves with perpetually increased
velocity, seeming to gather fresh speed every moment, until its force is such
that every obstacle is overcome; trees and rocks are beat from its path,
and its rib 'n does not cease until it has rolled to a great distance on the
plain.

It is found by experiment that the motion of a falling body is increased,
or ace:Aerated, in regular mathematical proportions. . . . It has been ascer-
tained by experiment, tl .1+ a body, freely falling, and without resistance,
passes through a distance of sixteen feet and one inch during the first second
of time. Leaving out the inch, which is not necessary for our present purpose,
the ratio of descent is as follows. . . .

90. If the height through which the body falls in one second be known,
the height through which it falls in any proposed time may be computed.
For since the height is proportional to the square of the time, the height
through which it will fall in two seconds will be faux times that which it
falls through in one second. In three seconds it will fall through nine times
that space; in bur seconds sixteen times that of the first second; in five
seconds, twenty-Jive, times, and so on, in this proportion.

Just how far modern physics has departed from the spirit of
such writing may he disclosed by a glarce at the portion of any
present-day text dealirg with this same topic. The factors chiefly
responsible for the character of books such as Comstock's were at.
least three in number:

I. The increasingly rapid introduction of machines it,to all
branches of industry with the accompanying demand for more
information about these devices.

2. The refusal by the colleges to accept natural philosophy a
fit subject for college entrance requirements.

3. The belated survival of the naïve, philosophic, nonexperi-
mental point of view of mediaeval science.

Mann, C. H.. op. cit.
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The Quantitative Nature of Mod !rn High School Physics.
It is beyond the scope of this chapter to discuss in detail all the
influences that have determined the character of present-day high
school physics. However. any attempt to get a perspective of the
subject which failed to take into account the influence of the col-
leges would, indeed, be incomplete. This influence was felt in many
directions, and is concealed in many factors which, apparently in-
dependent of the university influence, exercised their effect upon
the developing subject of sceordary school physics. In 1872, by
recognizing physics as a subject suitable for college entrance credit,
the colleges hastened the disappearance of natural philosophy from
secondary school curricula. There followed a period in which the
dominance of the higher institutions of learning was undisputed.
They had set the staop of their approval upon the new subject and
insured its vigorous growth. What. was more natural than for the
subject of physics to acknowledge its fealty and to plan its courses
to be as much like those of its sponsor as possible? Since the
model was the college physics course. a very great emphasis was
placed upon the standardization of subject matter to this pattern,
to the mathematival side of the work, and to a general utilization
of physics for its disciplinary values. The inevitable followed.
Enrollment in physics dropped from about 23 per cent of all high
school pupil. in 1895, to 14 per cent in 1915. and to 9 per cent.
in 1922. Some of this drop must be discounted as due to the re-
moval of the subject from required lists and to the increased
diversification of the high school offering. However. making all
possible allowance for such factors, it is quite evident that there
has been a real falling off in enrollment in the subje,t, in spite of a
strong reorganization movement, which began about 1905, and was
featured by the report of the science committee appointed by the
National Education Association.

The Movement Against Mathematics. One of the features
of this reorganization has been the assault upon the mathemati-
cal portions of the subject. There has unquestionably been too
great an emphasis upon this feature of the work. So long as the
disciplinary theory of eduatitm held, the place of mathematic-
was clearly indicated. The more difficult and rigorous the course,
the greater the disciplinary value gained by struggling through it.
Therefore educ:;tors made the subject more stringent by insertin,
great numbers of mathematical problems. Tradition was with
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them; their ,nodel, college physics. had been featured by rigorous
mathematieal discipline for a long time; problems requiring mathe-
matical solutions are the easiest to devise and correct; to require
a class to solve several hundred problems was an assignment that
was clear-cut and definite, and what is more, was easy to check for
complete performance. Physics too frequently degenerated into a
meaningless juggling of algebraic formulas, devoid of significance
for either physies or mathematies. A law would he studied and
then "proved"--as though it could heby means of a few read-
Ligs taken in the laboratory f very likely judiciously manipulated
by the budding scientist la an attempt to make the "proof" more
satisfactory I.* Then would come the delugethe solution of large
numbers of problems based on the law and using the particular
formula, which in so.ne mysterious fashion was a shorthand expres-
sion for the laN,.

A reaction was inevitable and, as often happens with such phe-
nomena, it went too far. It was advocated that physics should he
stripped of its mathematics and made into a subjeot almost en.
tirely descriptive. Thus Mieheison, one of America's foremost
physieists, proposes "for discussion the feasibility of a plan for
the teaching of physic's which avoids as far as possible the use of
mathematics of even the most elementary kind, and which gives
to flu science of measurement only a secondary importance."
Adams' suggests. "Mathematics should be used very little in the.
class in physic's except for the solution of problems which are in-
trodueed in connection with the laboratory work to generalize and
establish laws from given data."

Opinions such as these were widely circulated in the profes-
sional literature of a few years ago. It seemed necessary that
every high school physics teacher take a stand either for or against
the demathematization of his subjeet. If it had not been for the
influence of the colleges. it is possible that a form of physics zimi-
lar to the old natural philosophy might have gained a foothold.
As it is, the force of the movement is manifest in the perpetuation
from year to year of various hybrid eourses in Household Physics,
Applied Physic's. Physics for Non-College Students. and the like.
Mot.- recently came a swing in the other direction. The cry went

Eumtpin 1,4 ru parted to havo said, "No amount of experimentation can ever
!wave mP right. .1 single experiment may at any time prove me wrong."

4 Manisa. J. \V.. currrlatinn detwern Mathematfes and Phyitiest in American High
.+r/o0/4. Master's thesis. Teachers College, Columbia Cniversity. 1902.
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up that the basic outline for the physics course should be the same
for all. modifications in specific content being made to fit the
needs of individual classes. Above all, "demathematization must
stop." a

As we look back over the contested issues from our vantage
point in the year 1930, we realize that much of the time and energy
devoted to the discussion of this problem has been wasted. Once
again we have been the victims of our educational myopia which
renders us unable "to see the forest for the trees." It is as though
a convention of carpenters should become engaged in a heated
controversy over the advisability of discarding the hammer in
future building construction, when no superior substitute is in
sight. The question is not whether they should, or should not,
employ the hammer, but rather, how means can be devised to
instruct members in the more efficient use of all the tools of their
trade.

So it is in physics. There is no question of whether we shall
curtail the use of mathematics as much as possible or expand its
use in all directions. To debate the question is to distort and alter
the whole problem. Such discussion predicates a physics course,
a main objective for which is: To show how the science of physics
may he used to illustrate mathematical processes. Our problem is
to devise means to employ more effectively this tool of the scien-
tist's trade.

The Role of Mathematics in High School Physics. Rusk
says in this connection:

Those who are crying for secondary school physics to throw off the burden
of mathematics and become descriptive. should carefully reconsider their
position and what they mean by descriptive. Mathematics should certainly
not be loaded on the high school physics pupils as a burden, but without
the adequate use of mathematical forms neither methods nor appreciation
of precise thinking about. physical phenomena can he developed. What is
needed to-day is not an attempt to develop embryo mathematical physicists.
but a more frequent use of simple mathematical forms by all. Even in
elementary physics the pupil should he Ird to look upon the mathematics
he uses as either simplifying the subject and making it more intelligible.
or as making it directly applicable and useful. More mathematics than the
pupil can thus consciously assimilate is useless and confusing.

Rusk is here suggesting certain specific aspects of the funda-
11mulnli. D. P. and others, "The flare of the Numerical Problem in HighSehnol Phssieg." Xrhool Rye lor, Vol. 21i:39-13, 1;115.

"Rusk. lingers 5/.. Hour to Trash Phyairs. p 57. .T. B. Lippincott Co., 1923.
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mental concept of mathematics as a tool. To these we can add
certain of our own, so that the list now stands as follows:

Mathematics can be used in connection with high school physics:
1. To simplify the subject and make it more intelligible.
2. To make it directly applicable and useful.
3. To enrich Pie concepts of physics.
4. To show the interrelations of the various divisions of the subject matter.
(The various items in the preceding list are not mutually exclusive. A

single mathematical operation may be used in more than one of the above
connections.)

Illustrations of these uses will be brought out in a later section
of this chapter.

But is this a conception of the role of mathematics in physics
that is at all new? We have already seen how it was of use when
physics was taugl t for its disciplinary values. Let us look at
mathematics used in a different fashion by the mathematical re-
search physicists h( fore we decide.

Many years ago, Nichols and Franklin in a preface to a text
in physics said: "Calculus is the natural language of physics."
Others have expanded the statement to include all mathematics.

A slightly different point of view is shown by the statement of
another author, when he says, "The finished form of all science is
mathematics."

With the recent discoveries in physics, the relationships between
the frontier physics and its language, mathematics, have subtly
altered. Mathematics is often no longer the languageit is the
speaker itself. The scientific phenomena which mathen:atics has
interpreted have been replaced by mathematical formulas which
are probably not capable of being translated into any sort of
mechanical modfsl. Indeed. we are warned against making the
attempt.

This new variety of space. Einstein makes no attempt to visualize. Its
definition is strictly and severely mathematical. ... In such a space Einstein
has found it po,sihle by means of the calculus of tensors; to build up a self-
consistent geometry: and in terms of such a space he has formulated a
general mathematical theory which as one special case reduces to Maxwell's
equations. and as another to the equations of Einstein's gravitational theory.'

I do not. maintain that this substitution of mathematical for-
mulas for what we have been pleased to call physical reality is

* Hey], P. it., Neu. Front irrs of Phimics, p. 135. D Appleton & Co.. 1930.



142 THE SIXTH YEARBOOK

universal in modern physics. I do maintain that it indicates a
changed relationship.

The role of mathematics in secondary school physics, at the
present tune, is probably midway between the two positions; the
,me which it. occupied in early high school physics in which it was
used as a taskmaster to make the subject difficult, worthy of in-
clusion on lists of subjects suitable for college entrance, and hence
of great disciplinary value; the other which it occupies to-day in
research physics. To our question, "Is this a new conception of
the role of mat' ...Ales in physics?" we are forced to give a quali-
fied negative. The Nile of mathematics as interpreter and simplifier
is not new. It has simply taken on a greatly increased signifi-
cance in high school physics of to-day.

An Integrated Physics Course. Before specifically illustrat-
ing ways in which mathematics enriches high school physics, it
will be necessary to develop briefly the point of view of the latter
subject.

It has been evident for some time that one of the obstacles
standing in the way of more satisfactory student. accomplishment
in high school physics was the manner in which the work was
segregated into five water-tight compartmentsMechanies, Heat,
Sound, Light, and Electricity. Such a procedure made it difficult
for the student to grasp the underlying unity of the subject and
hence to tie in each day's work with the course as a whole. Dis-
satisfaction resulted, and poor learning was the usual outcome. It
seems necessary. then, to present the various divisions of physics.
or any science, as part of a larger whole, or to state it differen+1.,,
to develop the entire course around some large, unifying concept.
This is not a new idea. nor is the concept difficult to obtain. Space
permitting, it would he rather easy to show that the "Energy Con-
cept" is the one best suited for such a development. Mann," as
far back as 1912, indicated how it. might be used. Numerous
writers of science works intended for popular consumption have
testified to its importance tHeyl. Bridgman, LuekieshTeans).
In spite of this fact, textbook writers have lagged in producing
texts developed around the energy concept. A possible statemenl,
of the concept for the physics course might be, "Physics is the
study of energy and energy transformations which are basic to the
continued existence of all life and to the universe itself."

Mann. C. R., op. cit.
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EXAMPLE, How much work can a steam engine, which is 8%
efficient, perform for every pound of coal consumed?

The question obviously involves the relationship between heatand work. Is it a fixed one? The early work of Rumford and
Joule. in particular, gives i;s the answer. Whenever a fixed amount
of work is used up in producing heat, the quantity of heat energy
produced is always the same. The converse is equally true. The
relationship is that 1 B.T.I.7.*= 778 foot pounds. Each pound of
coal when burned produces about 14,000 B.T.U. of which only
8r,*i., or about 1,120 B.T.U., is utilized. Thus the engine can do
1,120 X 778 or 871,360 foot. pounds of work. For each pound
of coal, a 1,000 pound weight. could be raised about 900 feet!

b) Changing one form of mechanical energy into another form
of mechanical energy.

EXAMPLE. An automobile, weighing 3,200 lbs., is travelling atthe rate of SO miles per hour. What is its kinetic energy?
The problem in this form illustrates admirably what I mean

when I say that it is not a question of whether we shall or shall
not diminish the amount of mathematics to be used in high school
physics, but rather of the way in which we shall use it. At this
point the student will have had the definition of energy as "ability
to do work" and of kinetic energy as "energy due to motion."
And yet almost all texts are content to give problems which merely
require the student to work out values for kinetic energy, a pro-
cedure which is almost sure to be meaningless for him. It is re-
motely possible that by requiring the student to label his answerwith the proper unitfoot poundsthe unit of work, he %%ill obtain
a fleeting impression that this kinetic energy may, in some man-
ner, he converted into work. Let us make sure that he realizes
that this transformation does take place by adding the following
problem:

The automobile hits a stone. wall and is brought to a stop.
How great is the shock which the bumper receives, if it bends 6'"?

Using our ordinary formula, , , we learn that t2g he
car has a kinetic energy of 96,800 ft. lbs. This amount of workmust he absorbed in bringing the car to a halt.. Now work is ob-

The B.T.U. (British Thermal Vnit) is the an,ottnt of heat required to raisethe temperature of 1 lb. of W14 or t degree F.
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engine could cause the generator to develop 40 X 746 X 80% or
about 24,000 watts.

We may carry the question further if we desire by asking,
"How many 40 watt lights could such a plant optratc?" The an-
swer is obtained, of course, by simply dividing the 24,000 by 40,
which gives 600.

d) Changing electrical energy into heat energy.

EXAMPLE. how long would it take to heat a liter (about one
quart) of water from room temperature, 20°C., to the boiling point
in an electric percolator which uses 550 watts and which is 60701
efficient?

The quantities involved are the unit of electrical energy, the
watt second or joule, and the unit of heat, the calorie, which are
related by the expression. 1 joule 0.24 calorie. A calorie is the
heat required to raise the temperature of 1 gin. of water 1°C.

The energy input into the percolator is in the form of watt
seconds of which only 60% are available, due to unavoidable in-
efficiencies of operation. The number of seconds is unknown. Let
this he represented by t. Then the number of watt seconds avail-
able for transformation into heat energy is 60% of 550t or 330t
watt seconds.

Now each watt second equals 0.24 calorie, so our 330t watt sec-
onds is equivalent to about 79t calories. Putting it somewhat
differently: in one second the percolator will produce 79 calories.

Let us turn our attention to the water. There are 1,000 grams
(.1 liter of water weighs 1.000 grains) which are heated from room
temperature, 20°C., to the boiling point, 1003C., a rise of 80 de-
grees. Hence 1,000 X 80, or 80,000 calories, must, be supplied by
the percolator. Thus it will take 80,000/79 or about 1,013 sec-
onds, which is about 17 minutes, to produce the desired result.

We could, of course, give other examples of mathematical illus-
trations of energy changes, the conversion of light and other radiant
forms of energy being the only ones beyond the scope of the high
school course.

A final energy change, most basic of t11, is that by which the
sun and other stars produce their energy. ,Jeans and others have
advanced as the most, tenable hypothesis that this energy is pro-
duced by the direct change, or conversion. of matter into energy,
mainly light and radiant heat. As a result of thi.: theory, we have
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been deluged with such statements as these: There is enough
energy in a piece of coal smaller than a pea "to take the Maure-
tania across the Atlantic and back "; or, In a single pound of coal
(or for that matter a pound of any substance) there is sufficient
energy to keep "the whole British nation going for a fortnight, do-
mestic fires, factories, trains, power stations, ships and all." °

But is there a fixed relationship here, as with other energy
transformations? Yes, for we arc told that for every gram of mat-
ter completely destroyed 9 X lirF" ergs of energy are produced. Or
if we change that to more familiar units, for every pound so de-
stroyed about 3 X 101" foot pounds of energy result. Darrow '°
reports that the earth receives (i0 tons of energy in the form of sun-
light every year, or about of a pound a minute. That means
that we are receiving in the form of light, radiant heat, and other
forms of energy % X 3 X10'" foot pounds of energy each min-
ute. That is about 7.5 X 10'5 foot pounds per minute, which is
equivalent to about 2.3 X 1011 horse power (230,000,000,000 H.P.).

All of these energy changes are made more real and vivid by
the realization that a certain quantity of one kind of energy may
be converted into another form and, by the proper mathematical
equation, the resultant quantity of new energy computed.

2. Definitions and Units. I have taken up the use of mathe-
matics to illustrate energy changes first, simply bemuse these
transformations are basic to all of high school physics. There
are, however, other uses for mathematics than these. One of the
most important is in clarifying and simplifying the defivitions and
units of the science.

a) Work is a unit often used. We define work as that which
is accomplished when a force acts through a distance, or, as it is
sometimes defined, "the overcoming of resistance." Soiretimes
the proviso is added that the force must be measured in the direc-
tion in which the motion takes place. Not a very clear -rut defi-
nition, possibly. But how simple it becomes when we put it in the
form of a formula, W = F X s, and illustrate it by such a prob
lem as this: -How much work du you do when you, walk to the
top of a stairway 10 ft. high.' Assuming you weight as 150 lbs.,
the answer 1,500 ft. lbs. is obtained immediately.

Jeans, sir Juns. l'airursc .1 round l'x, p, 1S1, Tlie Macmillan Company,

1 Durru. L.. Thy Nrir 'World of Physical Discorf ry, 330. Iiubbx Merrill,
1930.
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We may use a sort of reductio ad absurdum method to further
clarify the meaning by assigning and discussing such a problem as,
"You are pushing a lawn mower which weighs 40 lbs. flow much
work do you do in pushing it 10 ft.? Many will at first multiply the
weight, 40 lbs., by the distance 10 ft., getting 400 ft. lbs. for an
answer. But going back to our fundamental definition of work
as force times distance, we realize that the force required to push
the mower is not given when we know the weight alone. Con-
sequently the problem as stated cannot be worked. Let us carry
our problem further. Suppose friction is negligibly small. Then
the work done, the product of this negligibly small force and the
ten feet, is itself negligibly small. In the theoretical case when
there was no friction at all, no work would be done. Suppose,
though, we were to carry the mower to the top of a flight of stairs
ten feet high, could we then get an answer? Our formula requires
us to u::e a force. Do we know it? Yes, it is 40 lbs., because at the
earth's surface it requires a 40 lb. force to lift a mass of 10 lbs.
magnitude. Our work is now 40 X 10 or 400 ft. lbs.

By focusing our attention on the fact that we. must use u force,
the formula has helped to eliminate the confusion resulting from
two situations in one of mhich we can use the weight of the ob-
ject and in the other of which we cannot.

b) Another unit, the meaning of which is clarified by a ncithe-
matical treatment, is the watt second, or the more convenient.
larger, kilowatt hour. It is easy to establish the fact that the watt
is a unit of power. Now, power is defined mathemat:eally as
work/time or Wit. A watt second then is a unit of power, 1171,
multiplied by a unit of time, t. Dividing out the is we get simply
W. In other words, the watt second is a unit of work, or electrical
energy. Similarly the more practical kilowatt hour, which is merely
a larger measure, is also a unit of electrical energy.

Other instances might be given but these are probably suffi-
cient to illustrate this important function of mathematics in high
school physics.

3. Laws and Principles. One illustration will be sufficient,
I believe, to show how mathematics helps to clarify and enrich
some of the laws of physics.

One of the most important laws in physics is the so-called
"Reverse- Square Law" which states that the intensity of the illumi-
nation from a given source varies directly with the strength of the
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source and inversely with the square of the distance from it.
Stated algebraically:

Illumination (foot. candles) = Candle power
Distance2

Let us compute the illumination at distances of 1, 2, and 3 ft.
from a 36 candle power light. We get 36, 9, and 4 foot canc11.1s,
respectively, numbers which bear the relationship of 9 to 4 to 1 to
each other or 32 to 22 to 12. The original distances were 1, 2, and
3 feet. The illuminations are in the inverse order and squared.
Certainly this more vividly illustrates the real significance of the
law than a nonmathematical discussion could possibly do.

4. Structure of Matter. Without being inclined to demon-
strate mathematically that it is all quite possible, populvr writers
in this field have usually been content to astound with statements
such as the following, the two parts of which are apparently con-
tradictory.

If all the molecules in a cubic centimeter (1,4 of a cubic inch) of hydrogen
gas at ordinary temperature and pressure, were placed end to end in a single
line this "string of molecular beads" would extend several million miles or
many times the distance between the earth and the moon. In a cubic
centimeter of hydrogen at atmospheric pressure and at the temperature of
melting ice there are 2.7 X 10' molecules, each having a diameter of 2.17 X
10-1 cm.

(And then follows the part apparently irreconcilable with the for-
mer statement about the "molecular beads.")

Less than a millionth of the total space [italics mine] is occupied by the
hydrogen molecules under these conditions."

We may very well ask how it is possible that these molecules
should reach so far when placed end to end, and yet that less than
a millionth of the space should be occupied by them? Small won-
der that high school physics pupils reading such a statement put
it down as another one of those things beyond their comprehen-
sion.

But let us see what mathematics shows. The distance the
molecules will reach when placed in a line is the sum of their
diameters. If we multiply the number of molecules, 2.7 X 10'9,
by the diameter of each, 2.17 X 10-8 we get about 6 X 10" cm.
This is 6 X 10" kilometers or about 3.6 X 10" miles, that is 3,600,000

111,acklesh. Matthew, Foundations uJ the Universe, p. 34. 1). Van Nostrand
Company, Inc., 1925.
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miles. Since the distance from the earth to the moon is only
240,000 miles, we see that actually the molecules would reach 15
times as far as the moon,

To check the statement about the space, we need to know the
space occupied by one molecule, that is, its volume. We will need
to assume that the molecule is spherical in shape, which is prob-
ably not quite true. The volume of a sphere is given by the formula
:itad3, or % X 3.14 X t2,17 X 10 '')2, or about 5.1 X 10-2' cubic
centimeters. If we multiply this by the total number of molecules
in one cubic centimeter, 2.7 X 10'2, we approximately 14 X
or about 1/7,000 of a cubic centimeter. This does not agree with
Luckiesh's statement. It may be he is in error. Or perhaps our
fundamental assumption that t:Ie molecule is spherical is wrong.
If it were in the shape of a flat, elongated ellipsoid, the volume
of each molecule would be greatly reduced without affeeting the
length of the' molecular beads." Or we may attempt reconciliation
by saying that th;s Ague. 1/7,000. represents the portion of the
space that Nvou 1 d he occupied by so/id spheres of the same diameter
as the molecule, while it is known that the molecule is far from
solid.

In any event, the fundamental picture of a volume of gas in
which the molecules when placed end to end will reach vast dis-
tanees, and yet in which the molecules are separated by distances
which are large in compatison with the size of individual molecules,
is rendered quite consistent.

One further illustration of the use of mathematics in the field
of the structure of matter is afforded by the kinetic-molecular
theory of gases. You will recall that this theory indicates that
th -s. molecules of gases are moving in a haphazard fashion in all
directions and that when two gases are at the saute temperature, the
mean kinetic energy of the molecules of one gas equals the mean
kinetic energy of the molecules of the second gas.

At some time during the work on heat. the fact is brought out
that the molecules of the gases are moving at different speeds andthat those of the lighter gases are the most rapid. Usually an
experiment styli as that We qrated is used to show this fact ex-
perimentally. Whvti illuminating as is introduced under the
bell jar, its molecules being smaller and of higher speeds diffuse
throupli the porous cup faster than the umleettles of air inside es-
cape to the (mashie. This produces an increased pressure inside the
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cup which pushes the indicating column clown. On removing the
jar, the reverse process takes place, a partial vacuum is produced
inside the cup, and the indicating column rises to a point higher
than that at which it stood originally.

Now the explanation of this result, o.«4.44
i.e., that the molecules of illuminating 130.20u.3 c.:t

gas +largely methane CH4, carbon mon-
oxide CO, and hydrogen H) are all
lighter than air and hence move at a
higher rate of speed, follows directly
from the theory which asserts that the
average kinetic energy of the molecules 1"`"="6
is the same. The mathematical state-
ment is

1/4/1i2 WVa2 Dubruty
2g 2g

where wi and vi stand for the averazi,
\veight and average velocity cf the mole-
oules of various substances in illuminating gas and w,, and r,, similar
quantities for air molecules. Multiplying through by 2g we get

wivi2 = wova2.

Nov the average value for wi, the weight of the gas molecules, is
less than for W. Hence in order that the equation may be pre-
served we realize that the molecules of illuminating gas must have
a haphazard motion decidedly faster than that of the air mole-
cules.

If we desire to make the illustration more specific, let us take
the case of oxygen and hydrogen. Again we have

wovo2 = whvh2.

Nov it is known that the oxygen molecule is 16 times as heavy as
that 0/ hydrogen; in other words, that wo = 16wh. Substituting
this value for wo in the preceding equation, we get

16whvo2 = whvh2 or 16vo2 V42.

Taking the square root of both sides
4 vo = vh.

In other words, the average velocity of the hydrogen molecules is
four times that of the oxygen molecules.
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This is the last of four types of illustration, chosen to bring
out the various uses to which the tool, mathematics, can be put
in high school physics. There are, of course, other illustrations
that might have been used with equal validity. Let us reiterate
our fundamental belief that no one is able to hand down ex-
cathedra opinions on the quantity of mathematics to be used in
physics. We can only decide upon the quantity and nature of the
mathematics we will employ, in assisting in the development of
a certain specific unit, to perform those tasks of which mathe-
matics is admittedly capable.

MATHEMATICAL ABILITIES NEEDED IN HIGH SCHOOL PHYSICS
Kilzer 12 has shown that, next to an interest in the subject, the

outstanding factor contributing to success in physics is ability to
handle the simple mathematics involved. This is merely a recent
verification of something that many physics teachers have long
believed. Most vigorous in their advocacy of this theory have
been those teachers whom it helped to free from the responsibility
for large numbers of student failures. When 25 per cent of the
physics class failed and this was not at all uncommon), the
teachers could wash their hands clean of the whole affair by ex-
claiming, "What can you expect with the poor mathematical prepa-
ration our students get in this school?" Such an attitude is in-
fectious and many very excellent physics teachers, at some time
or other in their careers, have rallied around the banner whose
slogan is, "Blame it all on the mathematics teacher."

As long as the doctrine of the transfer of training held sway,
this attitude was bound to be widely accepted. To-day we realize
that., whatever may be the responsibility of the mathematics de-
partment, the blame for the large number of failures that have
been common in high school physics must be placed squarely upon
the shoulders of one individual, the physics teacher. With this
realization the saner point of view, expressed in the following
quotation, has gained recognition.

The apparent lack of transfer of training is due to both the failure toretain what was learned and the failure to m, any common connecting
elements between the field of mathematics and mathematics in physics. Poorwork in the mathematics involved in physics is not entirely due to the

" ilzvr, L. R., ."rhe nitheolattes Needed In High School Physics," RehoolKoiener and if at hem ( Mem , Vol. 211 811).31;::, ( An abstract of the author'sPh.D. dissertation on this subject.)



MATHEMATICS IN PHYSICS 153

mathematics itself. . . . Thus mathematics and the understanding of the
subject are dependent on ability to read and understand material connected
with physics; to understand what is said by the teacher and others in the
class."

Before attempting to solve the problem of what to do about the
acknowledged inability of students to solve numerical problems in
physics, two questions need to be answered:

1. What mathematics is actually needed for the working out
of the problems in physics?

2. How well can the average student handle this mathe-
matics?

Reagan 14 solved the 241 problems found in one edition of Milli-
kan and Gale's text, and analyzed each for the skills needed. He
found that arithmetical processes were the most commonly used;
addition being used 47 times; subtraction 37 times; multiplication
422 times; division '266 times; common fractions (including all
processesreduction, addition, etc.) 97 times; as well as miscellane-
ous skills with smaller frequencies.

Algebra was used less often, the skills with their frequencies
being:

1. Trarvlation of laws of physics into mathematical formula 9

2. Derivation of formula from given mathematical relationship 6
3. Selection of formula 56

4. Solution of equation with one unknown 11

5. Solution of quadratic equation
(Not solvable by factoring.)

6. Squaring a binomial
7. Operations with signrd numbers 13

Geometry was utilized with still less frequency. Only 16
theorems, of which the most important were those dealing with the
similarity of triangles. proportionalities between lines, and the re-
lation between the sides of a right triangle, were found.

The use of trigonometry, solid geometry, and the like, was not
clearly indicated as necessary.

As a result of this study, Reagan concludes that the demands
on mathematical ability arc not unduly heavy; that the knowl-
edge of arithmetic is satisfactory if the student can multiply and

13 (in s. Mildred J.. auxex of Failure in High Nehool Physire. Contributions to
dunthm, V.I. U. World Book emnintny. 1n24.

"Reagan. ;. W.. "The Mnthennit lex Involved In Solving High School Physics
Problems.- ,Shwil Nvit /UT and Mathcmatirg, Vol. 25 : 292.299, 1925.
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divide integers up to 12 places and if he can app the laws of
mensuration; that the ordinary geometry course is reasonably
sure to be adequate preparation; but that algebra is the mostlikely to be deficient where work with formulas, ratios, and pro-
portions is involved.

Lohr 15 prepared a 28-problem test which he administered to
classes in both secondary and junior college physics, He found
a rather large list of specific mathematio4kabilities, such as the
ability to determine the volume of a sphere given the radius, to
make a line graph of the relation 1.1F. 321 and the like,
which could be solved correctly by less than 75 per cent of the
members of both groups; and a somewhat smaller list, such as the
subtraction of decimals, and redwing inches to centimeters, the
reduction factor being given, that could be handled correctly by
more than 75 per cent of the college group, The secondary group
was not significantly different.

He concludes that, on the whole, "pupils come to physics with
a marked ability to handle the mathematics of physics"; that the
inabilities can be determined; and that it is the duty of the physicsteacher to identify the mathematics difficulties, to reteaeh the
mathematics needed, and to teach the physics of the problem situa-tion. Note the temperateness of this last conclusion. There is no
tendency to lay the blame on the mathematics teacher. Physicsteachers have come to realize that be a student as well trained as
you please in mathematics, unless the physics in the problem situa-tion is well taught there will be an unsatisfactory accomplishment.
The difficulties inherent in the situation, even when all these con-
ditions have been met. is well brought out by Nyberg's 1' criticismof Lolly's work. The writer points omit that some of the inabilities
revealed might he (Inc to small differences between time wording
commonly employed in physics texts and that used in algebras.
These small differences are very likely not to he explained away in
teaching the physics of the problem. For example. one of the skills
in which large numbers of the students were deficient was the
ability to determine the per cent of error between the true and time
measured scores. Nyberg points out that a stident might fail to

15 I.nbr. "A Study of thy Ma them:Wm! AM lIti Powrrs awl Skillsn s Shown by Certn In Classes In PhysIvn I Svirnep. Frhunl Nriener and Mathe-motirA, Vol. '271! k!:-1 R14. l 92n.
11 Nyhtig. .1 Hs. I II:4E11.44ln 1.f an .1 rt on :Mu t Iwnin t Iva I .1bIlitIPs andsrhool Srien re and Mat honntirx, 211 : 9.15. 19'211.
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attempt the problem through not knowing whether to compute the
per cent error on the true or the measured score, even although,
when the scores are reasonably close, results are virtually the sante
whichever is employed. Algebra texts commonly indicate which to
use as a base.

Similarly, graphing the relationship C.= (F. 32) % might
have seemed more difficult than it is intrinsically, because the units
for graphing were not stipulated. In other problems, Nyberg
seemed to find violations of graphing rules, hazy instructions, awl
unfamiliar terminology creating artificial difficulties.

All this serves to illustrate the complexity of the whole prob-
lem. Beside teaching the physics of the problem situation, the
teacher, in order to secure reasonably satisfactory performance in
problem solving. will probably need to reteach the mathematics
involved, identifying identical elements, and should also make sure
that unfamiliar phraseology or deviation from mathematical prac-
tice do not needlessly complicate matters. It is quite probable that
Kilzer's suggestion that a pretc t of mathematical ability he given
early in the course is a good one.

WHAT PHYSICS ASKS OF MATHEMATICS

All of the suggestions of the preceding paragraph were basrd
upon the assumption that the mathematical training of entering
students is satisfactory. Let us consider what steps may be taken
to make this preparation of greater value in plip:cs. takinp
Reagan' s IT analysis as a starting point for our progra mathe-
matical training.

1. Algebra. Arithmetic is not commonly taught in high school.
so first we will consider certain specific suggestions with respect to
algebra.

a) Formulas. An examination of recent textbooks in algebra
will reveal that a great deal more work with the formula is indi-
cated than was common in earlier books. It is very probable that
the type of wo k being done in this line in the best of modern
schools is amply odequate for the needs of high school physics.

More specifically, a physics teacher might suggest that ample

practice he given in solving a formula such as I = -F fc,r both E

and R and, in general, that drill he given in solving each of the
IT Ittqlg:1 II. 1i. NV
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formulas commonly encountered in physics for letters of the right-
hand member, In addition, considerable practice should be given
in obtaining the value of one symbol when actual values for the
others are given.

t4onietinies physieS students are asked to examine data obtained
in the laboratory or elsewhere, in an attempt to discern the rela-

tionship connecting two of the quantities
involved. Sometimes the data are exceed-
ingly simple and the relationship quite
exact, as in the table at the left:

Physics teachers will recognize these as
data from the experiment showing the re-
lationship between resistance of various

portions of a circuit and the voltage drop around that portion. An
alaebra student will easily discern that there is a direct relationship
between the two quantities. True, it is not quite exact, but in view
at the fact that these are experimental figures and hence subject
to the usual errors of experiment, a consistent mathematical rela-
tionship is definitely suggested.

Data do not always come out so nicely: as, for example. in the
table at the right which gives inea:-urcd values for the distance
covered by a -frictionless" car, moving
down a taut wire, in various time intervals. Pis-TA :leg

I.r.Ntvro or Vol.TA0k1
S I I" 'IL M WI Its 111101'

23 cm.
50 cm.
75 ctn.

100 cm.

1.5 volts
3.1 volts
4.5 volts
5.9 volts

Here the relationship is at once less
obvious, and less exact. If thy.! -tudent is
to notice at all the tendency tor a direct
pl'oport ionality to exist between the dis-

14" 1 sec.
4' 5" or :53" 2 sec.
10' or 120" 3 sec.
17'2" or 206" 4 sec.

tance and the square of the time, he needs
considerable experience with a similar type of work.

It is quite common in some high school algebra classes to ask
students to write a formula that will express the relationship be-
tween the quantities in a table. The work of the two tables above
suggests the desirability of including: a certain number of problems
ill which. as the data are supposed to he the result of actual meas-
urement (and hence subject to error) the simple mathematical
relationship between the quantities may be slightly in error for
some, or possibly all, of the pairs of measurements.

b) Proportion and Variation. Physics texts abound in such
expressions as. "The density of air. or any gas, varies directly as
the pressure at constant temperature." And then as a mathemati-
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t
cal equivalent of this law sonic such expression as

Dt P= is given.
I

The first time this situation arises (and it arises often), the begin-
ning student is plunged into difficulty. In many instances he has
had no experience in dealing with qwntities that vary directly
one with the other (although he may 1. se handled an equivalent
problem disguised under a different terminology), or if he has, a
method not employing a proportion may have been used. The
mathematics teacher will be of very real assistance here if the use of
the subscript. is taught. to bring out the distinction between different
quantities of the same kind. (Thus D. D,, D, or Da, Di D, may
indicate different numerical values of density.) In addition, the

Di Piuse of expressions such as
D /I,:
--

.,
= to show a direct variation be-

.tween two quantities, and Pt = vt; to indicate an inverse variation,

should be thoroughly taught and utilized in a number of situations.
D P D1 D. DThe fact that and the like, are all

P2' P, Pr'
equally valid as expressions of the same direct relationship, as well
as the corresponding equivalents of the inverse variation, such as
that given above, should also be brought out and thoroughly fixed
by drill.

The method for solving proport'ons should also be taught. In
addition to the usual cross-product (product of the means equals
product of the extremes) method, the various ways for first simpli-
fying a proportion should be made functional. The following
proportions will make this point elem.. In each case before cross-
multiplying the indicated simplification should be performed.

9= 9 Simplify dip first, ratio to r.

25
7

Divide both nm 2uerators by 5, chan. ng to the form
x

10

Divide both denominators by 4 (equivalent to multiplying
45 x both :Ws of the equation by 4), changing to the form
8 12 45 x

2 3'
c) Other Operation$, The other algebraic skills specifically

indicated by the stmlies of Reagan and others are likely to be
thoroughly mastered in the usual algebra cour,o, since while they
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occur with a small frequency in physics problems they occupy amuch more prominent place in the mathematics course. For in-
stance, Reagan found that in the 241 problems in the Millikan andCale text only I solution of a quadratic equation and only 13
operations with signed numbers were specifically required.

While not fundamental to the solution of physics problems there
are several topics, not commonly included in an algebra course,
which bear on the ability to handle the mathematics of physics.
Taught in the algebra class, they would at once lighten the physics
teacher's burden and add topics which would be of interest inalgebra.

d) Metric System, Even though many algebra students maynot go on to take a physics course, yet the increasing use of the
metric system in everyday life amply justifies its inclusion in the
mathematics course. The increasing tendency for authors of
algebra texts to include a short section on the metric system, bears
testimony to the value of such a unit and to its fitness in a modern,
laboratory-type course. An opportunity is here afforded for cor-
relation betty een the moheniatics and the physics departments.Metric rules, grain weights and balances, graduated cylinders and
liter measures, all can be borrowed. Where possible, the meeting
place of the algebra class may be changed to the physics laboratory
for the duration of this unit. The first strip-film roll from the set
on Mechanics (sold by the spencer Lens Co.), which deals witht'x metric system, may be shown with advantage. Not only is
such cor7elated work helpful foi the physics teacher in rendering
unnenessary any detailed study for the metric system, but it is an
interesting variation from the usual routine of the algebra class.

e) The Slide Rule. If we accepts the theory of the ride of
mathematics put forth earlier in this article. we are forced to the
conclusion that any device which simplifies the mere mechanics of
multiplsing, dividing, and the like, is worth while. The slide rule
is such a device. We may summarize its advantages as follows:

1. By reducing the amount of attention that nerds to be devoted
to tl,e arithmetical processes by which the answer is obtained,
it allows the focusing of a more undivided attention upon the
physical principle involved.

2. When its use is thorow_dd mastered, a great deal of time ;s
saved. A greater number of problems may be worked, .a'
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the time spent on the mathematical development of a given
topic reduced.

3. Its use prevents obtaining results with an entire* fictitious
accuracy. If the measurement of the diameter of a eirel,
gives 2.46 cm., the final answer cannot be accurate in a
greater number of places. We are all too familiar with
answers such as 4.75292664, which is obtained with the usual
area formula, multiplied out "longhand" using n = 3.1416.
In this answer, the latter decimals are of no significance what-
soever as they were all obtained by a multiplication involving
the doubtful measured figure 6 of the original measurement.
The greatest number of places to which we are justified in
carrying the answer is three, giving 4.75 sq. ctn. for the area.
The slide rule more or less automatically takes care of such
situations.

Not only is the slide rule of advantage in physics but the mas-
tery of its operation is quite within the grasp of a ninth grade
algebra student. In fact the manner in which multiplication and
division are performed can he taught in a very few minutes.

The scales of a slide rule are logarithmic. Because of the de-
creasing space between successive numbers of the same order, the
spacing in different parts of the rule is not the same. Between 1
and 2, each of the smallest divisions indicates a value of .01 of the
whole space; between 2 and 3. and 3 and 4, .02; and from 4 to 10,
the end of the rule. .05 of a \dole space. This indicates the folly
of stopping with a mere demonstration of the principle of the rule.
We must insure an ability to interpret the scales quickly and
accuratelyan ability which can be acquired only after consider-
able drill. The algebra student who, by .i.; inself. will acquire any
real ability to use the rule following a short demonstration is an
exceedingly rare individual.

The Keuffel and Esser Company, 27 Fulton Strect, New York
City, who have rules that retail for as little as 75 ceeits nr one
dollar (subject to a school discount). also manufacture a large 8'
demonstration rule, and furnish helpful suggestions on methods for
teaching the use of the rule. In my own work. I have found
mimeographed work sheets helpful in this connection. On one such
sheet, three drawings of the 10" scale. full size. were shown. One
showed only the major divisions. the second both major and sec-
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ondary, and the third drawing some of the smallest divisions.
Questions were asked about the size of the different divisions and
students were required to indicate the value of certain points indi-
cated by arrows on the drawings. On a second sheet, magnifica-
tions of portions of each of the three size divisions were drawn.
Arrows were directed to various points on the drawings. By esti-
mating the reading of each arrow, practice in using the scales, when
the indicator does not coincide exactly with one of the markings,
was afforded the student. Other work sheets give instructions for
performing the various operationsmultiplying, divid!ng, squaring,
and extracting square root, together with a selection of problems
and answers.

To do a thorough job of teaching the slide rule is not the easiest
of tasks, but it gives the student a tool which is useful in many
future activities. Furthermore, students like the work. In the first
flush of their enthusiasm they will not multiply 2 X 3 except on
the slide rule. It is the task of the algebra teacher to utilize this
early enthusiasm to secure for the students a degree of confidence in
the accuracy of their results which will insure their turning to the
rule as a convenient tool, and not as a novelty or toy.

Since the slide rule is based upon logarithms, many teachers
may feel that. a knowledge of these is necessary for mastery of the
instrument. This does not follow. In industry many persons use
the rule who have only the vaguest of notions of the principles
involved. That these persons are any the less accurate or rapid in
their use of the rule has yet to be shown.

Criticisms of the slide rule sometimes advanced are that it is
inaccurate and that it encourages careless work. The slide rule
has its limitations. of course, but it is amply accurate for most
computations whieli high school students are called upon to per-
form, particularly where measured quantities are involved, as in
physics. By bringing out the principle that an answer obtained
by using measured quantities cannot be more accurate. except in
the case of an average, than the least accurate quantity employed
in the computation. the value of the slide rule in automatically
-rounding-off" n11:.:Wcr:-.: Will he indicated and fictitiously accurate
answers will be eliminated. A discussion of significant figures can
be appropriately taken up in this connection. To the charge that
it. encourages careless work, I peed simply respond that one of tin'
most important uses to which the slide rule is put, is that of check-
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ing results of ordinary computation. In the long run, the use of
the slide rule, by facilitating the checking of results, will probably
increase accuracy. Any individual cases in which carelessness has
followed its use are likely to be the result of failure to impress the
limitations of the instrument upon its user.

f) Exponents. Any reader of popular science articles cannot
help but be impressed by the number of numerical quantities such
as 2.7 X 1019 or 2.17 X 10-8 which occur. This would suggest the
desirability of adding to the usual work on exponents a more de-
tailed consideration than is commonly accorded this portion of the
subject. This work should include raising to a power; extract-
ing a root; multiplying; dividing; changing a decimal to this form;
changing from this form to a decimal. If, in addition, a real feeling
for the bigness of such a number as 2.7 X 1019 and for the minute-
ness of such a quantity as 2.17 X 10-8 is developed, at valuable
service will have been rendered the student.

2. Other High School Mathematics. The investigations of
Reagan and others have revealed that the small amount of geom-
etry (16 propositions} required in high school physics is almost
certain to be sufficiently functional after the usual "exposure" to
the subject.

Since physics is taught somewhat more commonly in the
eleventh sehool year, algebra and geometry constitute the usual
preparation of the pupils in mathematics. This being the case, a
knowledge of trigonometry cannot be ,xpected. Knowledge of the
simple functions, sine, cosine, and tangent, and also an ability to
use a table of their natural values are helpful, but not necessary.
This small amount of trigonometry is often learned in ninth year
algebra courses.

Some advanced schools :ire offering courses in the elementary
calculus in the senior year. With a physics group composed of
seniors taking both subjects, there is an opportunity for correlating
the work Of the two subjects in a few instances, notably in acceler-
ated motion. Thus, taking the derivative of the eqeation for the
distance covered by a freely falling holy in a given time, S=1/2gt2,
we get dS/dt = at, But dS/dt is simply a definition of velocity,
so we have = gt. Similarly, tai' ng the derivative of this equa-
tion, we get de/dt = g. Again, (Iv/dt is a definition for accelera-
tion. These processes will give a better insight into the meaning
of the terms -acceleration" and "velocity."
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Tyler I° puts it (speaking of a college group), "I like to tell my
students that the court will not accept v = sfi as a defense in a
case of over-speeding; that the automobile trap for obvious reasons
IlsesA

' and that our definition of derivative as speed merely coin-At
pletes the transition to the limit."

Of course, there &re no problems in the ordinary physics text
that require a knowledge of calculus for their solution.

CORRELATED MATHEMATICS AND PHYSICS

There have been widely varying opinions expressed as to the
amount of physics that should be introduced into a mathematics
course. Young says that physics "should be taught simultaneously
with mathematics throughout the four years of the course, bringing
the mathematical theory and the physical application into close
juxtaposition." '" In England there is customarily a great deal of
correlation between the courses. Nunn, an English writer, however,
atlirins that problems involving science principles to he used in the
mathematics course, "must be limited to those whose solution is
simply the question of the straightforward mathematics." 2" I
have, I hope, made my own position clear with regard to that which
I consider to be the role of mathematics in physics. As to the
rule of science in the mathematics class, that is beyond the scope
of this article. Suffice it to say that I am perfectly willing for the
mathematics courses to "help themselves" to as much science as
they see fit in order to enrich the content of their subjects.

And yet, in that which I am about to say, I may seem to be
inconsistent. There have been at various times enthusiasts who
have insisted that a combined physics and mathematics course
might be worth while. In at least one case, this cook the form of
cohcbining three subjectsa year of plane geometry, the mathe-
matics of the eleventh school year, and a year of physic's into a
single course to run for two years. The total number of recitations
in the two years were equal to those of two "majors." It would
be most unscientific for me to attempt to decide finally upon the

1"1 Tyler. II. W., "NlatlzmuatIvs In $e1,w ." The .Itathctttaeirx Tcar,her , V(11.21:273-279, 192s.
youn. 3. w. A., Tar Tr,trhin, of mat h, mat irx. Longmans. (irpen and (Nan-puny. 192:i.

0, Nunn. T. ppro,%. hc fi of 1 fp Va, I.ungtuan. 1;rovn antl Company,1919.
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merits or demerits of such a plan. It can unquestionably be carried
out with a good group of students who will remain through the
two years; and thae will be saved. In the same way, I am sure
that a gnaw of equal ability could he prepared to take the College
Entrance Examination in physics in one-half to two-thirds the
usual time. Unquestionably it would be a course in which many
of the larger generalizations and principles of physics would be
slighted, in the hurry to obtain the necessary information and
abilities (largely mathematical) necessary to make this scholastic
hurdle. In the same way, I feel that many of the larger principles
of physics would be lost in sonic. of the forced correlations of this
combined mathematics and physics course. Instead of ny real
appreciation of the energy concept and what it means to man and
his universe, the student would probably gain a very real under-
standing of the fact that science makes excellent illustrative
material for the study of mathematics.

SUMMARY

In this chapter. I have attempted to trace briefly the develop-
ment of to-day's high school physics, to show how it changed from
a highly descriptive, nonmathematical subject to one N1 Moll, under
the domination of the colleges, and in virtue of the doctrine of
discipline, became a highly mathematized subject, and how finally.
during the last decade, the pendulum has swung back, going per-
haps too far in its swing.

Whatever may be the final solution to this problem, it can be
demonstrated, I believe, that the role of mathematics in high school
physics is somewhat different from that which it assumes in the
colleges. and decidedly different from its dominant position on
the frontiers of physics research. By illustration, the attempt was
Wade to bring out the nature of this role. i.e., that mathematics is
an invaluable tool for simplifying, clarifying, and enriching various
aspects of the subject.

A consideration of the amount of mathematics training needed
for this function followed. and the conclusion was reached that
while the average student in physics has been "exposed'. to enough
mathematics. for various reasons, he is unable to work many
quite simple problems. The fault cannot he laid at the door of
any one department of the school, being inextricably tied up with
the newness of the subject for the student, and with the smallness
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of transfer. With the idea of improving, if possible, the mathe-
matical preparation, suggestions for slight changes from and addi-
tions to the usual algebra course were given.

If, as the result of this chapter, any clearer understanding of
the character and scope of the problem and of the relationship
between mathematics and physics is attained, the purpose with
which its writing was undertaken will have been realized.
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Harvard l'aiersity, Cambridge, Mass.

The empirical aesthetic formula

M = 0/C
where 0 is the "order" attributed to certain aesthetic factors (such
as symmetry, etc. ) with proper weights attached, where C is the
"complexity," and .1/ is the "aesthetic measure" itself, finds its
simplest possible application in the interesting, if elementary,
aesthetic question of polygonal form. Our aim in this chapter is to
deal with this case, and exhibit the result of the rigid application of
the formula to ninety typical polygonal forms, ordered according
to deereasing values of 41/ (pp. 190-195), If the reader finds a
gradual diminution in attractiveness in passing from the first
polygon (No. 1) to the last (No. 90), the formula may be regarded
as substantiated.

The judgment of students in two graduate courses, held at
Columbia University (summer 1929) and Harvard (summer 19301,
seems to indicate the validity of the formula. I wish to express
here appreciation of the cordial eoliperation which I received from
the students in these classes. In one instance. that of the right tri-
angle resting on a side (No, 70) , the rating was felt. to he too
low. If, however, the context supposed in this connection, namely,
that a sinfile polygon is used as a tilt in vertical position, is kept
in mind, it will be clear that while the right triargle is valued
highly as an element in composition. it is scarcely ever used in
this particular way, i.e.. in isolation.

Iii judging the validity of the formula it is necessary of course
to eliminate all accidental connotations, such !' .4 the religious one
of the crosses in the list, that of a rectangular box suggested by

i'rf,ert dinqv tt. the int, ettut,,,nra Math( matff i rimy/INN, ItoIngtm. 1928. For
n 4.1 II" i'''."1)"1"gioni bait: Of OW (M.11111111, SIP an art bit. -.1 Math°.
mat al .1i.i.n.a4.11 lu A.Si Ill°1 to appear in Nientift. I xpeet to
pub1i:-11 %anon:4 applia htwk form as swat as possibit.. - non.
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No. 37, and the like. Furthermore, the first effect of novelty must
be discounted.

1. Preliminary Requirements. If the problem of classification
of polygonal forms is to have reasonably precise meaning, some
particular representation must be chosen. We shall accordingly
imagine that we have before us a collection of blue porcelain tiles.
of uniform material and size. It is easy to consider these solely in
their aspect of pure form.

A further requirement must be imposed in order to fix the psy-
chological state of the "normal observer." Such a polygonal tile
produces a somewhat different impression when it is seen upon a
table than when it is seen against a vertical wall. In fact, such a
tile lying upon the table would be viewed from various angles,
while on the vertical wall it would have a single favorable orienta-
tion. Therefore it is desirable to think of the polygonal tiles as
situated in vertical position against a wall. In general, the selected
orientation will of course be the most favorable, although it need
not be so, as for instance in No. 85 o:* the list.

Perhaps tile actual use of the polygon for decorative purposes
which most nearly conforms to these conditions is that in which
some selected porcelain tile is set at regular intervals along a
stuccoed wall.

Just as in all other aesthetic fields, a certain degree of fan aw-
ay with the various types of objects involved is required before
the aesthetic judgment becomes consistent and certain. The ninety
polygons listed in order of decreasing aesthetic measure will furnish
a fair idea of the extent and variety of pol.gonal forms.

It is clear that when these requirements are satisfied the prob-
lem of polygonal form becomes a legitimate one.

2. Triangular Form. With these preliminaries disposed of,
let us turn to a determination of the principal types of aesthetic
factors affecting our enjoyment of polygonal form. Once such a
determination has been made, we will be prepared to assess the
relative importance of these factors, and to formulate an appro-
priate aesthetic measure such as we are seeking. We will begin
with the simplest class of polygons. namely the triangles.

Now triangles are usually classified as being either isosceles and
so having at least two sides equal, or scalene. Clearly the isosceles
triangles are more interesting from the point of view of aesthetic
form. The proper orientation of an isosceles triangle is naturally
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one in which two equal sides are inclined at the same angle
to the vertical. This is the case for each of the triangles (a), (b),
(0 of the adjoining figure. In all of these, the triangle "rests"

(a) (b) (e)

FIGURE 1

(d) (c)

upon a horizontal side. However, if these triangles are inverted.
the equal sides will again be inclined at the same angle to the
vertical. It is readily verified that this second reversed orienta-
tion is also satisfactory, and that these two are superior to all
others. With these orientations only do we obtain "symmetry
about a vertical axis." This is clearly a desideratum of first im-
portance.

Obviously if a symmetrical figure be rotated about the axis 1
of symmetry through 180', it returns to its initial position.

Judgments Of symmetry about a vertical axis are constantly
being made in our everyday experience. Let us recall, for example,
how quickly we become aware of any slight asymmetry in the
human face. Thus the association "symmetry about a vertical
axis" is intuitive, and is pleasing to a notable degree in almost
every instance,

If the isosceles triangle (b) be made to rest upon one of the
two equal sides, there still remains the feeling that the triangle is
in equilibrium, although the symmetry about the vertical axis is
thereby destroyed. It will be observed, furthermore, that the sym-
metry about the inclined axis is scarcely noted by the eye and is
not felt favorably. Thus the triangle in its new orientation makes
much the same impression as any scalene triangle which rests upon
a horizontal side compare with ( I. The indifference of the eye
to such an inclined axis of symmetry is also evidenced by the
isosceles right triangle (d) with one of its equal sides horizontal.

On the other hand, if the isosceles triangle (b) he given any
orientation whatsoever other than the two with vertical symmetry
and the third just considered, there is dissatisfaction because of
the lack of equilibrium.
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grouped in the following five given classes in descending order of
aesthetic value: (11 an equilateral triangle with vertical axis of
symmetry; 12) an isosceles triangle with vertical axis of symmetry;
(3) a right triangle with vertical and horizontal side; (4) a tri-
angle which is without vertical axis of symmetry and rests upon
a sufficiently long horizontal side to insure the feeling of equilib-
rium; 15) any triangle which lacks equilibrium. The triangles
of the first three classes are definitely pleasing; those of the fourth
class are perhaps to he considered indifferent in quality; and those
of the fifth class arc definitely displeasing. Since it is a natural
requirement. that the best orientation of any triangle he selected,
the fourth class will contain all tl... scalene triangles without a
right, angle. and the fifth class will not enter into consideration.

It has been tacitly assumed in the above analysis of triangular'form that no side of the triangle is extremely small in comp'1....on
to the two other sides, and that no angle is very small or very near
to 180'. These arc obvious prerequisites if the triangle is to be
characteristic. If they are not met, the triangle approximates in
form to a straight line and the effect is definitely disagreeable,
because of ambiguity.

We are now in a position to list the aesthetic factors that have
been thus far encountered: vertical symmetry (+), inclined sym-
metry (0), equilibrium (+I, rotational symmetry (+), perpen-
dicular sides (0). diversity of directions (), small sides (),
small angles or angles nearly 180' ().

Here and later we use the symbol f+) to indicate that the
corresponding association or element of order operates to increase
aesthetic value, the symbol 101 to indicate that it is without sub-
stantial effect, and the symbol to indicate that it diminishes
aesthetic value. Such associations or elements of order will accord-
ingly have a positive index in 0 if the symbol is (-F.), and a nega-
tive index if the syndic)! is t 1.

3. Plato's Favorite Triangle, It cannot he emphasized toomuch that the classification of the various forms of triangle given
above takes into account only the simplest and most natural
aesthetic. factors. I low completely such a scheme of classification
can be upset by the introduction of factors based upon fortuitous
associations, is easily illustrated.

Plato in the Timacus says: "Now, the one which we maintain
to be the most beautiful of all the many triangles and we need
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not speak of others) is that of which the double forms a third tri-
angle which is equilateral." The context makes perfectly clear in
what sense this statement is to be interpreted: If one judges the
beauty of a triangle by its power to furnish other interesting
geometrical figures by combination, there is no other triangle com-
parable with this favorite triangle of Plato. For out of it can be
built (Figure 2) the equilateral triangle, the rectangle, the paral-

FIGURE 2

lelogram. the diamond, and the regular hexagon among polygons.
as well as fi'r'e of the five regular solids. This power in combina-
tion was peculiarly significant to Plato, who valued it for purposes
of cosmological speculation. It was on such a mystical view that
he based his aesthetic preference.

Yet it may well be doubted whether persons not having his
particular philosophic outlook would agree with Plato. In fact,
it appears that this scalene right triangle is not superior to the
general right triangle for the aesthetic problem under consid-
eration.

4. The Scalene Triangle in Japanese Art. It is well known
that the Japanese prefer to use asymmetric form rather than the
too purely symmetric. Indeed, in all art, whether Eastern or
Western, obvious symmetry tends to heroine tiresome.

In particular it has been said that all Japanese composition is
based upon the scalene triangle. Is this fact in agreement with the
classification effected above which concedes aesthetic superiority to
the isosceles and in particular to the equilateral triangle? The
answer seems to be plain: When used as an element of composition
in paintino. the isosceles triangle may introduce an adventitious
element 01 symmetry which is disturbing to the general motif. But.

he much more elementary question of triangular form per sr,
the general opinion. at. least in the West, is in favor of the equi-
lateral and isosceles triangle rather than the scalene triangle.

Recently while in Japan I was fortunate enough to be able to
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least angle of rotation is eontained an odd number of times in
360° will not posess central symmetry; for example, the equi-
lateral triangle is a case in point, with a least angle of rotation
120° which is contained 3 times in 360",

It has been claimed that the rectangle is a form superior tothe scuare and even that certain reetangles such as the "Gohlen
Rectangle" excel all others. I shall indicate later in what- sense,
if any, sueli statements eau be valid (Section 6).

In the second ease of symmetry about the vertical axis, the
quadrilateral has two of its vertices on the axis of symmetry, but
none of the sides intersects the axis. Here the general possibility
is indieated by tel and t(1) of the figure below in which quadri-

(aaI (hi

4

i I (di

lateral lc) is roex ;old (it) is reilntrant. The first of these may,
however, reduce to Cie. equilateral quadrilateral or diamond as
in an, or even to the square (a) with sides inclined at 43° to the
horizontal directio.,.

Of the two g.T11("%ill represented hr the quadrilaterals ir)
and id} in Figure 4, . lc ar that die eonvex type () is definitely
superior to the altetto,:h.e -ei:nt rant tne of (oadrilateral (d). This
reilntrant character evidently operates so that the quadrilateral
sug-g('sts a triangle from Nellie]) a triangwar -niche- has been re-
MoVI I11 general cavil polygon ly UPlv4.Tn a given reintrant
polygon and t (011Vn pillyu;v11 %%111(11 (11(10S('S it k
termed a -niclu of the rei:ntrant polygtol. A rubber band stretched
around the given polygon will take tile form of the minimum en-
closing convex polygon.

It is not the men, fact that the quadrilateral is rei'utrant which
is (leciiely unfavorable. Consider, for example, the hexagt..n
or six-pointed star (see No. ti, page 160). This star is evidently
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follows the trapezoid, with two sides parallel as in (b) ; evidently
the association "parallel" is one made constantly and intuitively in
everyday experience. Then follow the general convex quadri-
lateral like (e), and finally the reentrant case illustrated by (d).

/
(a) (h) le) (4)

notrain 5

It will he observed that the presence of an isolated right angle
or of two equal sides, as in Irf , is without special influence.

We have now examined the various types of quadrilaterals and
arranged those of earl, type in order of preference. It remains to
compare briefly those of different types. On the basis of my own
aesthetic judgment I am led to arrange them in the following order
of diminishing aesthetic value: the square; the rectangle; the dia-
mond; the convex quadrilateral symmetric about an axis through
two opposite vertices, the symmetric trapezoid and the parallelo-
gram; the reentrant quadrilateral symmetric. about an axis; the
convex quadrilateral without symmetry; the rei:ntrant quadrilat-
eral without symmetry. Of these, the last two types are fletinitcly
unsatisfactory. Here I assume that the quadrilaterals are placed
in the most favorable position. of course. This iVe arrange-
ment is that assigned by the aesthetic formula.

We shall not attempt at this stage to compare triangles and
quadrilaterals with one another.

There are two new types of elements of order brought to light
1w our examination of quadrilaterals. The first is of negative type

-1 and oiler:Iles when the quadrilateral is reilntrant. Further
insight into the nature of this element will he obtained in a follow-
ing section. The second is connerted with the parallelism of sides
and is of positive type t -1 1. It is more oonvement, however, to
regard this second element on its negative side, when it is aptly
characterized as 'diversity of directions of sides" 1 . Evidently.

'Soo page
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which the ratio r of the longer side to the shorter is indicated in
each ease.

It can perhaps be justly said that a shape not suggesting a
simple numerical ratio like 1 to 1 or 2 to 1 is desirable in many
connections where the rectangle is used as an element in compo-
sition. hi that event the square and the double of a square are

r I r 1.411 r 1.1;1s4

Florid.: 6

A,

r 1.7:42 r

excluded. .1Ioreover, perhaps the rectangle approved by Plato
might. nut serve since it does not differ suffieiently from the double
of a square. But this still leaves a wide range of choice, embracing
the eases r 1.414 and also r = 1.618. fur instance. Of these two
I slightly prefer the rectangle with ratio 1.414 to the (;olden Rect-
angle with ratio 1.618.

NOW it- may he that certain persons, through their acquaintance
with and liking for Greek art, have come to individua.ize and
identify with fair approximation the particular shape embodied
in the Golden Rectangle. For such persons an intuitive association
of purely accidental ellaraeter Nvould he established in favor of the
(;olden Rectangle. Only hr assuming that a number of his ex-
periinentzd subjects were of this type ran I understand the experi-
na.aal results of Fechner in favor of-a particular ratio of nearly
8 to 5.

In comparing the square and the rectangle, it should nut he
forgotten that the rectangles contain an infinitude of shapes, de-
pendent on the ratio of the siffl's, lereaS the :4414141re 111T:,(11tr.1 but
at Singh' shape. Hemp the rectangles provide a much more flexible
instrument in dcsign than the square does. It is. for example,
obvious that when a rectangular frame is used for a portrait the
square shape is in general less suitable than that of a rectangle
with the height greater than the breadth. However. I believe that
the square is much inure often used than ally other single rev-
tanuldar form. such the 11411(14'11 liVrtallide.

rem arks do unit 41111tV do full justice to the special forms
of the reetangles when these are not used singly but in combination
with other polygonal forms. For instance. the arrangement of two
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In this connection we may note the fact that the convex polygon
of many sides is more likely to be pleasing than the rei:ntrant one,
particularly if the latter contains a diversity of niches.

A second very important new facto(' makes its appearance when
the polygon is directly related to -3mile uniform network of horizontal
and vertical lines, as in the case of the Greek cross [see (al,
Figure 8j, or else is closely related to a uniform diamond network

(a) (b)
FIGURE 8

see (b) I with its sides equally inclined to the vertical. this dia-
mond network in turn sugg,esting a uniform horizontal- vertical
network.

L'vidently the aesthetic factor of close relationship to a uniform
horizontal-vertical or diamond network plays a 11111da Went al part
and enhances the aesthetic value of many polygons listed, e.g., the
square (No. I), the rectangle (No, 2) , the diamond (No. 4) , the
hexagram (No. 6). the Greek cross (No. 9) . t he swastika emblem
(No. 41 , etc. In the case of the square, rectangle, and diamond,

1.!1" validity of this association is perhaps debatable. But, so fre-
quently do we see these polyg.ons used in conjunction with a net-
work that it seems proper to regard them as suggesting relationship
to a uniform horizontal-vertical or diamond network. On the
other hand, it is evidentl not levitini:de to regar.1 the association
with :t uniform diamond network ns possessing. interest equal to
tl.at of association with a horizontal-vertical network. It is with
tLese facts in mind that the empirical rule dealing with the aesthetic
factor of relationship to such a network will be formulated. The
associational basis of this f:letor in everyday experience is obvious.
Systems of lint's placed in the regular array of a network are con-
,tantly tort with. and their rehoion,hip to one another is intui-
tively apprceiaceti.

Iii the osideration of such more eomplicated pol.ygons it
appears a.. .1,at some kltltl of symmetry is always required if the



180 THE SIXTH YEARBOOK

polygonal form is to be at all attractive. When this requirement is
not met, no degree of relationship to a horizontal-vertical network,
for instance, can entirely offset the deficiency. Thus. if symmetry
is lacking, the fact appears as a definite negative aesthetic factor
winch must be taken account of.

Evidently a further actual aesthetic factor in many cases is
SOME' accidental association, such as is present, for example, in
the case of the cross and the swastika. The mathematical theory
takes no :ireount Of such completely indefinable -elements of order,"
although they have a definite aesthetic effect.

9. On the Structure of the Aesthetic Formula. According
to the general theory proposed in the lir:4 chapter, we seek an
aesthetic formula of the type .11 -_, O r where M is the aesthetic
measure, 0 is the order, and r is the complexity. In the case of
polygonal form before us, O will he separated into five elements,

0 1- E +I? F
The aesthetic factors encountered above art' correlated in the
following way with and these five elements:

C: c,unplcxity.
vt-rtivat symmetry (+I.

E: equilibrium (+).
R: rotation:11 syto)ertr (-f-).

111 cltla iation In a lioriZoat.il-rilical attwork
1': 111)-all4avlory form IllytIlvaa: flino of thr followine famors: too

suLdt (11,1:turf,: front vrtit-r otl,.; sMvs (I, or :Ludes
too no:i 0 or IN0 or ally otlwr :India :ally of form; diversity

eatlio7: ( i; un,u; (ortrii 1:atalit t ) ; diverriity of
thtc!ioas ); lack of smtotry (

It %in be observed that the term F involving the general
attributes of unsatisfactory form is an "(m)Ilium gatherumn for all
the netzative aesthetic factors which have been noted.

The various indifferent fartors of type 101 play 110 part ' I
course. Some of these art' equality of soles. perpendicularity of
sides, and inclined or horizontal symmetry [without vertical axis
of symmetry).

In the course of the teelillical ealoNtion of V, E, Ili-, p,
and su of .11. to %%nch we MOW proceed. a simple mathematical
effileept. IlallIel. that of the group of motions of the given polygon.
will be introlluerel. voncept !ous a basic mathematical
adjunct, necessary for the comprehension of the problem before us.
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The aesthetic measure M defined by the forniu'a will turn out
to depend upon the orientation of the polygon. In case an axis
of symmetry exists, the highest aesthetic measure of a particular
polygon will invariably be found when such an axis is taken in the
vertical direction. But the same measure will be obtained if this
orientation is reversed. This seems to be in accordance with the
facts which are observed. An apparent exception is furnished by the
Roman cross (,No. 49) and certain other polygons, when an inversion
appears to diminish notably the aesthetic value. But this will be
found to be due to the fact that an important connotative element
of order is thereby removed; for instance, in the case of the cross
it is the religious association. Our conclusion, therefore, is that
these exceptions are apparent rather than real.

10. The Complexity C. The complexity C' of a polygon will
he defined as the least number of indefinitely extended straight
lines which contain all the Sider; of the polygon. Thus for any
quadrilateral the complexity is evidently 4; for the Greek cross
(, No. 9) the complexity is 8, although the number of sides in the
ordinary sense is 12; for the pinwheel-shaped figure (.No. 531. the
complexity is evidently 10; and so on.

The psychological reasonableness of this empirical roe is evi-
dent. For COI1VCX polygons, and also for polygons which are not
convex but which dl) not possess any two sides that are situated in
the same straight line, the complexity C is merely the number of
sides. As the eye follows the contour of the polygon in looking
at the various sides in succession, the effort involved would appear
to he proportional to the number of sides. On the other hand, if
there are two or more sides on one and the same straight line.
the eve follows these in one motion. For example, in the case of
the Greek or Roman cross.. the eve might regard it as made up of
two rectangles. These considerate )ti suggest that the definition
chosen for the complexity is appropriate.

11. The Element V of Vertical Symmetry. The organiza-
tion of the entire polygon which results from vertical symmetry is
obvious to the eye. By long praetiee we have beeonte accustomed
to appreciating symmetry of this sort immediately. On this ac-
count the eloment is particularly significant.

Sktil give to the value 1 if the polygon po,st.sses sym-
metry about the vertical axis. and the Yalta. 0 in the cant airy case.
In other words, the element 1' will be a unit element of order, and,
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since there exist various polygons of pleasing quality, such as the
swastika, which do not have vertical symmetry, we shall assign
the value 0 rather than some negative value to V when there is no
such symmetry.

A large proportion of the polygons listed possess such vertical
symmetry, and it can he verified that the presence of such sym-
metry is immediately and favorably recognized.

12. The Element E of quilibrium. We consider next the
second element E of order concerned with equilibrium. It has been
previously observed that when the polygon has vertical symmetry
or when it rests upon a suilieiently extended horizontal base, it is
felt to be in equilibrium.

In order to specify completely the requirements for equilibrium,
we note first that it is optical equilibrium which is referred to,
rather than ordinary mechanical equilibrium. For example, the
pinwheel polygon No. 53 would actually be in (unstable) mechanieal
equilibrium if turned through an angle of 45°, inasmuch as the
center of area would lie directly above the lowest point. Never-
theless, it does not give the optical impression of equilibrium, since
the eye is not accustomed to estimating accurately the balance of
figures acted upon by gravity.

What is really needed in order that the feeling of complete
equilibrium be induced, is either that there be symmetry about the
vertical, or that the extreme points of support at the bottom of the
polygon are sufficiently far removed from one another, with the
center of area ling well between the vertical lines through these
two extreme points.

In order to state sufficient requirements for this, we shall agree
that coniplete optical equilibrium will he induced if the center of
area lies not only between these two lines. but at a distance from
either of them, at least one-sixth that of the total horizontal
breadth of the polygon. If this somewhat arbitrary condition is
satisfied, as well :is in the (`:Ise of vertical symmetry. we shall give
E the value H1. It the polygon does not satisfy these conditions
but is in equilihritmi in the ordinary mechanical sense, we shall
take E to be 0. Otherwise we shall take E to be 1. inasmuch
as the lack of quilibrium is tlu definitely objectionable.

In general the It orientation of a polygon xill be one of
complete l'qUiiihrill111. Among, the ninety polygons listed, this is
the ease wit how, exception.
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There is also a second case when the rotational element R is
felt almost equally favorably, despite the lack of true vertical
symmetry; namely, when the minimum convex polygon which in-
closes the given polygon does not abut upon any of its niches, and is
symmetric about a vertical axis. Polygons Nos. 41, 50, 51, and 69
illustrate this case. Here the inclosing convex polygon is so
strongly suggested, with its q axes of symmetry, as to suggest
vividly the rotational element.

On the other hand, even though the minimum inclosing polygon
is symmetric about a vertical axis, the same effect is not felt if the
niches abut on its vertices. This third case is illustrated by poly-
gons Nos. 53, 67, 85, 88, 90. In partial explanation of this differ-
ence in effect it may be observed that. in the first two eases the
center of the polygon is clearly defined, either by means of the
axes of symmetry of the given polygon or by means of those of the
niiuiniutn enclosing polygon which are strongly suggested. This
circumstance operates advantageously.

In both of the first two eases we shall take the element 1? as
q/2 so long as q does not exceed 6. For q equal to 6 or greater,
we take R = 3, since the effect of the rotational element is limited
and seems to attain its maximum when q is 6. The mathematical
reason for the particular choice of q/2 as the value of 1? when
q does not exceed 6 is alluded to in the next section.

We pass next to the further consideration of those polygons
falling under the last case. Two possibilities need to be distin-
guished according as q is even or odd respectively, thus giving rise
to a third and fourth case respectively.

When q is even, there is central symmetry, and such central
symmetry is appreciated immediately. In particular, it enables
the observer to fix the center accurately. Here there are no axes
of symmetry, actual or suggested. :!Ince it is only these that bring
out clearly the rotational symmetry, the rotational symmetry as
such plays only a small role; and so we take I? = 1 in the third
case, whatever be the value of q so long as it is even. The justifica-
tion from the mathematical point of view of the choice 1? = 1 in
this case will not be attempted here.

Polygons Nos. 39, 45. 48, 53, 65, 67, 74, 77, 84, 85 illustrate this
third case li = 1.

On the other haml, the four polygons, Nos. 79. 88, 89, and 90,
illustrate the convex and rei.'ntrant types in the fourth case. It
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will be observed that even in the convex type one is scarcely aware
of the rotational symmetry.

Thus in this fourth case, as well as in any case where there is no
rotational symmetry whatever, we are led to take R = 0.

14. The Group of Motions of a Polygon. It has been seen
that either a rotation of a polygon about one of its axes of sym-
metry through 180°, or a rotation of the polygon about its center
of area through a multiple of the fundamental angle of rotation
3609q, will return the polygon to its original position. There are
no other motions which can leave a polygon unaltered. Among
these motions we will list (by convention) the particular motion
which moves no point, as well as the other motions A, B, . . . , if
such there be.

Definition. of the grout of motions of a polygon. The collec-
tion of rotations of a polygon about each of its axes of symmetry
through 180°, and of the rotations about its center of area through
any angle of rotation, will be termed the "group of motions" of
the polygon.

The group of motions of a polygon has the fundamental prop-
erty th it two such motions A and B performed successively will
also return the polygon to its initial position, and so be equivalent
to a single motion C of the group; or symbolically, AB = C.

This leads us to two further related definitions:
Definition of conjugate figures. If F be any figure in the plane

of a given polygon, which takes the successive positions F, FA, FR,
. . . under the corresponding motions I, A, B, . . . of the group,
the figures F, FA, FR, . . . are said to he "conjugate."

Definition. of fundamental region. A region of the plane which
with its conjugate regions fills the entire plane in which the given
polygon lies. but in such a way that these regions do not overlap.
is said to he a "fundamental region" for the given group of motions.

It is worth while to give an illustration. For the rectangle with
vertical axis of symmetry, the motions of the group (besides I)
are evidently the rotations S. and .qt/ of 180° about the vertical and
horizontal axes of symmetry respectively, and the rotation I?

through 180° in its plane about the center.
It is evident, Om- two opposite sides of the rectangle are con-

jugate under this group of motions. Similarly, the four vertices
of the rectangle are conjugate under the group. Finally, it is clear
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that any one of the four quadrants into which the plane is divided
by the two axes of e) mmetry Is a fundatnental region for this group
of motions.

It is evident that these concepts are really necessary for the
understanding of the element It above treated, In particular, the
quantity q/2 It 1. 1 for q = 2 when the fundamental region is
a half plane, and is inversely proportkml to the angular size of
the fundamental region. This evaluation of If agrees with the choke
of V as 1, bemuse of the fundamental half plane in the case of
vertical symmetry.

IS. The Element UV of Relation to a Network. In many
polygons of the list, as has ken previously noted, there is obviously
a close relationship of the given polygon to a uniform horizontal-
vertical network, and this relation is at once recognized as pleas.
ing,

Evidently the corresponding element UV in 0 is connected with
certain motions of the plane in much the same way as the element.
V is connected with a motion of rotation about a vertical axis,
and the element It with a motion of rotation about a center, In
fact, such a uniform network returns to its initial position when
any one of a variety of Inundatory motions of the plane is made,
while these same motions will take the polygon to a new fund-
tio9 in which it may in large measure have the same bounding
lines Its it had in its first position. This happens when most of
the sides of the polygon coincide with the lines of such a network.
In an incomplete way, then, the element //V is connected with
ny)tions of the plane just as are the elements V and R.

The most fu .orahle case is evidently that in which the polygon
has all its sides upon a uniform network of horizontal and vertical
lines in such wise that these lines completely fill out a rectangular
position of the network, In this case only do we take //V = 2.
polygons Nos, I, 2, 9, 23, 25, 29, 29, etc illustrate this possibility.

The choke of a value //V = 2 seems natural since there are
essentially two kinds of independent translatory motions which re-
turn the network to its original position; namely, a translation to
the right or left, and a translation up or down, Any other trans-
lation may be regarded as derivable by combination from these two.

A similar ease is that in which the sides of the polygon all he
upon the lines of a uniform network formed by two sets of parallel
lines equally inclined to the vatic al, and fill out a diamond-shaped
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portion of the network. But the effect here is less favorable so
that we take UV = 1,

It becomes necessary at this stage to face a somewhat difficult
and vexing question, and assign an index in all cases when the
polygon is agreeably related to a uniform horisontal.vertleal or
diamond network, We shall fix upon the following empirical
rules, We define Ill' to be 1 if the polygon fills out a rectangular
portion of a horizontal-vertien1 network in such a way that the
first set of conditions holds, with the following possible exceptions:
one side of the polygon and its conjugates may fall along diagonals
of the rectangular portion or of adjoining rectangles of the net-
work; one vertical and one horizontal line, as well as their con-
jugates, may nut be occupied by a side of the polygon.

Illustrations of this case //V= I are furnished by polygons Nos,
19, 24, 42, 43, 49, ISO, 02, 00 of the list given above.

NV will also be defined to be 1 if the polygon fills out a dia-
mond-shaped portion of a diamond network with the following
possible exceptions: one side of the polygon and its conjugates
may fall along diagonals of the diamond-shaped portion or of ad-
joining cliamonds of the network; one line in the diamond-shaped
portion and its conjugates may not be occupied by a side.

Polygons Nos, 5, 0, 24, 53, 05, 08 are illustrations of this ease
//V =1,

In every ease when //V is I we shall demand that at least two
lines of either set of the network shall be occupied by a side. In
all other eases whatsoever we shall take 11V = O.

It is obvious that the above determination of indices for the
element //V is largely arbitrary. Nevertheless, it seems to agree
with the facts c.hserved,

16. The Element F of General Form. There remains to be
treated the factor dealing with general form which we have de-
scribed as an "omnium gatherum" of unfavorable elements (Sec-
tion 0) ,

The case where is 0 corresponds to satisfactory form. Here
the analysis made in the earlier sections suggests the following
conditions: the minimum distance from any vertex to any other
vertex or side must not he too smallfor defit,iteness, we say it is
not to he less than 1/1,) the maximum distance between points of
the polygon; no ang;e is to he too small or too largefor definite-
ness we say not less than 201 nor greater than 1600; the-^ is to be at
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most one niche and its conjugates; there is no unsupported refin-
trant side; there are at most two directions and their conjugate
directions, provided that horizontal and vertical directions are
counted together as 6, o; there is sufficient symmetry to the extent
that not both V and R are 0,

It is possible to justify this choice of conditions by reference to
the ninety listed polygonal forms, Here we may omit the first
two conditions from consideration, since they merely eliminate
ambiguity of form. The third condition, which admits only one
type of niche, has its origin in the observed fact that only a single
niche may occur, as in the Creek cross (No. 9), without the form
being thereby im; aired. The fourth condition is justified by the
fact already noted that any unsupported retintrant side produces
a disagreeable effect. Similarly, if there are three or more dist+ Jt
types of direction, the polygon appears unsatisfactory, unless two
of these are vertical and horizontal, as in No. 43, for instance; this
fact gives rise to the fifth condition. Finally, the sixth and last
of these conditions is obviously to be based upon the fact already
noted, that a lack of effective symmetry is not possible with satis-
factory form.

By this rule we take account of all the factors of F as these
were listed in Section 9.

We consider next the case in which one and only one of the six
conditions foils and that to the least possible extent there may be
one type of vertex (and conjugates) for which the first condition
fails; or one type of angle for which the second condition fails; or
two types of niches; or one unsupported rektrant side; or three
types of direction when vertical and horizontal directions are
counted as the same; or both V and R may be 0. Under these cir-
cumstances we take F to he 1.

In every other case we take F to be 2.
All the polygons Nos. 1 to 22 inclusive have F= 0, No. 24 is

the first polygon for which lit is 1, because of its having two types
of niches; No. 23 is the first which has one type of unsupported
reentrant sick. The first case for which P is 1 because of diversity
of directions is No. 60. The first for which F is 2 is No. 55 which
is also the first for which V and R are 0.

17. Summary. The various elements in the complete formula
Ilf=V-1-E+R+HV F
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have now been defined. The complete definition might be anent-
bled in brief form. Let. us, however, merely recapitulate the main
facts:

V = 1 if there is vertical symmetry (otherwise 0).
= 1 if there Is vertical symmetry or the polygon "rests" on

a long enough horizontal side; E = 0 if there is "unstable"
equilibrium; l = 1 if k a polygon appears about to fall to one
side or the other,

R ry,.2 if there is rotational symmetry with angle 360°/ry
of rotation, and there are axes of symmetry or axes are strongly
suggested (e,g., the swastika, No, 41 ) except. that 11 is taken as 3 for
q > 6; in any other case R = 1 If there is central symmetry, and
R= 0 if there is not.

//V = 2 if there is complete coincidence of the polygon with
a rectangular part of n uniform horisontal-vertical network (e,g.,
No, 41) ; 1W = 1 if there is nearly complete relation to such a net-
work, or complete or nearly complete relation to a uniform dia-
mond network with sides equally inclined to the vertical: 11V is 0
otherwise,

= 0 if the form is satisfactory; F = 1 if there is one element
of unsatisfactory form: as one type of unsupported side; or two
types of niche; or three types of directions when vertical and hori-
zontal are counted as only one direction; or when there is no sym-
metry t1' and /1' both 0); F:= 2 if there are more than one of these
elements of bad form,

C is the number of straight lines occupied by the sides of the
polygon.

The ninety polygons listed below in order of decreasing M
according to the empirical formula show the result of a rigid appli-
cation of this formula.

It retrains for the reader to determine for himself, by inspection
of the polygons listed or by consideration of still further polygonal
forms, whether or not the formula is to be regarded as reasonably
satisfactory.
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